YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical and Experimental Study of Internal Curing Effects on Permeability of Mortar Samples

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 002
    Author:
    Ruizhe Si; Qingli Dai; Xiao Sun
    DOI: 10.1061/(ASCE)EM.1943-7889.0001561
    Publisher: American Society of Civil Engineers
    Abstract: This study investigated the transport properties of cement mortar using microscale X-ray computed tomography (μCT) characterization techniques, the Permeability Solver computational program, and laboratory experiments. Lightweight aggregates (LWAs) were used as the internal curing agent in this study. Mortar samples with and without internal curing were prepared with a water-cement ratio of 0.45. The μCT techniques were applied to obtain digital data of the microstructure of the mortar samples at the resolution of 1 μm. The acquired images were processed to identify the pore structure. Three-dimensional (3D) digital pore structure samples were reconstructed, and the data were read by the Permeability Solver to analyze the porosity, pore conductivity, and permeability of the mortar mixtures. Pore connectivity was evaluated by the burning algorithm. Water transport was simulated by the finite-difference method combined with the compressibility relaxation algorithm. Darcy’s Law was then applied to calculate the permeability of the mixture. The transport properties of mortar with and without internal curing were simulated at 60 and 84 h. The results showed that the internally cured samples had lower permeability than the samples without internal curing. The permeability of the samples with internal curing decreased from 60 to 84 h. The results indicated that autogenous shrinkage cracks could be mitigated using internal curing.
    • Download: (1.104Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical and Experimental Study of Internal Curing Effects on Permeability of Mortar Samples

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254843
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorRuizhe Si; Qingli Dai; Xiao Sun
    date accessioned2019-03-10T12:05:35Z
    date available2019-03-10T12:05:35Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001561.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254843
    description abstractThis study investigated the transport properties of cement mortar using microscale X-ray computed tomography (μCT) characterization techniques, the Permeability Solver computational program, and laboratory experiments. Lightweight aggregates (LWAs) were used as the internal curing agent in this study. Mortar samples with and without internal curing were prepared with a water-cement ratio of 0.45. The μCT techniques were applied to obtain digital data of the microstructure of the mortar samples at the resolution of 1 μm. The acquired images were processed to identify the pore structure. Three-dimensional (3D) digital pore structure samples were reconstructed, and the data were read by the Permeability Solver to analyze the porosity, pore conductivity, and permeability of the mortar mixtures. Pore connectivity was evaluated by the burning algorithm. Water transport was simulated by the finite-difference method combined with the compressibility relaxation algorithm. Darcy’s Law was then applied to calculate the permeability of the mixture. The transport properties of mortar with and without internal curing were simulated at 60 and 84 h. The results showed that the internally cured samples had lower permeability than the samples without internal curing. The permeability of the samples with internal curing decreased from 60 to 84 h. The results indicated that autogenous shrinkage cracks could be mitigated using internal curing.
    publisherAmerican Society of Civil Engineers
    titleNumerical and Experimental Study of Internal Curing Effects on Permeability of Mortar Samples
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001561
    page04018132
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian