YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transient Analysis of Dam–Reservoir Interaction Using a High-Order Doubly Asymptotic Open Boundary

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 001
    Author:
    Yichao Gao; Feng Jin; Yanjie Xu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001553
    Publisher: American Society of Civil Engineers
    Abstract: A high-order doubly asymptotic open boundary (DAOB) for the modeling of a semi-infinite reservoir with constant cross section is developed, in which the compressibility of water and the absorption characteristic of a reservoir bottom are considered. The dynamic stiffness matrix is approximated by a doubly asymptotic continued fraction solution with an additional factor matrix to improve its numerical robustness. The continued fraction solution converges throughout the entire frequency range quickly as the increasing orders of approximation and is verified by a rigid dam example. Introducing the auxiliary variables, a temporally local high-order DAOB is formulated. Coupling the high-order DAOB with the finite-element method (FEM) straightforwardly, an efficient procedure for the transient analysis of dam–reservoir interaction is developed and implemented in an open-source finite-element software OpenSees. Gravity dam and arch dam examples subject to dynamic loading conditions including the dam–reservoir interaction are analyzed. It is demonstrated that this proposed procedure is of high accuracy and computational efficiency.
    • Download: (1.377Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transient Analysis of Dam–Reservoir Interaction Using a High-Order Doubly Asymptotic Open Boundary

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254835
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorYichao Gao; Feng Jin; Yanjie Xu
    date accessioned2019-03-10T12:05:26Z
    date available2019-03-10T12:05:26Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001553.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254835
    description abstractA high-order doubly asymptotic open boundary (DAOB) for the modeling of a semi-infinite reservoir with constant cross section is developed, in which the compressibility of water and the absorption characteristic of a reservoir bottom are considered. The dynamic stiffness matrix is approximated by a doubly asymptotic continued fraction solution with an additional factor matrix to improve its numerical robustness. The continued fraction solution converges throughout the entire frequency range quickly as the increasing orders of approximation and is verified by a rigid dam example. Introducing the auxiliary variables, a temporally local high-order DAOB is formulated. Coupling the high-order DAOB with the finite-element method (FEM) straightforwardly, an efficient procedure for the transient analysis of dam–reservoir interaction is developed and implemented in an open-source finite-element software OpenSees. Gravity dam and arch dam examples subject to dynamic loading conditions including the dam–reservoir interaction are analyzed. It is demonstrated that this proposed procedure is of high accuracy and computational efficiency.
    publisherAmerican Society of Civil Engineers
    titleTransient Analysis of Dam–Reservoir Interaction Using a High-Order Doubly Asymptotic Open Boundary
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001553
    page04018119
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian