YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stacked Elasticity Imaging Approach for Visualizing Defects in the Presence of Background Inhomogeneity

    Source: Journal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 001
    Author:
    Danny Smyl; Sven Bossuyt; Dong Liu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001552
    Publisher: American Society of Civil Engineers
    Abstract: The ability to detect spatially-distributed defects and material changes over time is a central theme in structural health monitoring. In recent years, numerous computational approaches using electrical, electromagnetic, thermal, acoustic, optical, displacement, and other nondestructive measurements as input data for inverse imaging regimes have aimed to localize damage as a function of space and time. Often, these regimes aim to reconstruct images based off one set of data disregarding prior information from previous structural states. In this paper, we propose a stacked approach for one increasingly popular modality in structural health monitoring, namely quasi-static elasticity imaging. The proposed approach aims to simultaneously reconstruct spatial changes in elastic properties based on data from before and after the occurrence of damage in the presence of an inhomogeneous background. We conduct numerical studies, investigating in-plane plate stretching and bending, considering geometries with various damage levels. Results demonstrate the feasibility of the proposed imaging approach, indicating that the inclusion of prior information from multiple states visually improves reconstruction quality and decreases root mean-square error (RMSE) with respect to true images.
    • Download: (1.170Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stacked Elasticity Imaging Approach for Visualizing Defects in the Presence of Background Inhomogeneity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254834
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorDanny Smyl; Sven Bossuyt; Dong Liu
    date accessioned2019-03-10T12:05:26Z
    date available2019-03-10T12:05:26Z
    date issued2019
    identifier other%28ASCE%29EM.1943-7889.0001552.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254834
    description abstractThe ability to detect spatially-distributed defects and material changes over time is a central theme in structural health monitoring. In recent years, numerous computational approaches using electrical, electromagnetic, thermal, acoustic, optical, displacement, and other nondestructive measurements as input data for inverse imaging regimes have aimed to localize damage as a function of space and time. Often, these regimes aim to reconstruct images based off one set of data disregarding prior information from previous structural states. In this paper, we propose a stacked approach for one increasingly popular modality in structural health monitoring, namely quasi-static elasticity imaging. The proposed approach aims to simultaneously reconstruct spatial changes in elastic properties based on data from before and after the occurrence of damage in the presence of an inhomogeneous background. We conduct numerical studies, investigating in-plane plate stretching and bending, considering geometries with various damage levels. Results demonstrate the feasibility of the proposed imaging approach, indicating that the inclusion of prior information from multiple states visually improves reconstruction quality and decreases root mean-square error (RMSE) with respect to true images.
    publisherAmerican Society of Civil Engineers
    titleStacked Elasticity Imaging Approach for Visualizing Defects in the Presence of Background Inhomogeneity
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001552
    page06018006
    treeJournal of Engineering Mechanics:;2019:;Volume ( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian