YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A-RESCUE 2.0: A High-Fidelity, Parallel, Agent-Based Evacuation Simulator

    Source: Journal of Computing in Civil Engineering:;2019:;Volume ( 033 ):;issue: 002
    Author:
    Hemant Gehlot; Xianyuan Zhan; Xinwu Qian; Christopher Thompson; Milind Kulkarni; Satish V. Ukkusuri
    DOI: 10.1061/(ASCE)CP.1943-5487.0000802
    Publisher: American Society of Civil Engineers
    Abstract: Effective evacuation of residents in hurricane-affected areas is essential in reducing the overall damage and ensuring public safety. However, traffic flow patterns in evacuation contexts is far more complex than normal traffic and is usually accompanied with severe congestion due to the presence of evacuees. In such scenarios, agent-based simulation can accurately capture evacuation traffic patterns, which can be extremely useful in evacuation management. However, existing simulators are not fully capable of simultaneously handling highly detailed household behaviors as well as large-scale traffic in evacuation contexts. In this study, we develop a parallelizable, large-scale version of A-RESCUE (an agent-based regional evacuation simulator coupled with user-enriched behavior) called A-RESCUE 2.0. Detailed household evacuation behaviors are modeled using a comprehensive decision-making module. Computation loads induced by the large number of evacuation vehicles are distributed by a parallelization scheme that involves partitioning the road network into subnetworks such that traffic updates in each subnetwork are simultaneously updated in parallel. Dynamic load balancing among different subnetworks is ensured by periodically repartitioning the network using a mutilevel graph partitioning algorithm. A predictive network-weighing scheme is developed that assigns weights (reflecting computational load) to the roads of a network based on current and predicted future network traffic loadings. An on-demand routing strategy is also developed that allows effective rerouting computation based on changing traffic patterns. A-RESCUE 2.0 is capable of representing nonevacuee background traffic, as well as uncertain events on the network like road closures. In addition, real-time monitoring of traffic patterns is made possible using a visualization module that is connected to the simulator through an efficient data communication layer. Comprehensive experiments are conducted on the Miami-Dade County network to validate the applicability of the developed simulator on real-world networks. Findings from experimental tests confirm that the parallelization scheme is effective in improving computational performance.
    • Download: (2.930Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A-RESCUE 2.0: A High-Fidelity, Parallel, Agent-Based Evacuation Simulator

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254719
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorHemant Gehlot; Xianyuan Zhan; Xinwu Qian; Christopher Thompson; Milind Kulkarni; Satish V. Ukkusuri
    date accessioned2019-03-10T12:02:21Z
    date available2019-03-10T12:02:21Z
    date issued2019
    identifier other%28ASCE%29CP.1943-5487.0000802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254719
    description abstractEffective evacuation of residents in hurricane-affected areas is essential in reducing the overall damage and ensuring public safety. However, traffic flow patterns in evacuation contexts is far more complex than normal traffic and is usually accompanied with severe congestion due to the presence of evacuees. In such scenarios, agent-based simulation can accurately capture evacuation traffic patterns, which can be extremely useful in evacuation management. However, existing simulators are not fully capable of simultaneously handling highly detailed household behaviors as well as large-scale traffic in evacuation contexts. In this study, we develop a parallelizable, large-scale version of A-RESCUE (an agent-based regional evacuation simulator coupled with user-enriched behavior) called A-RESCUE 2.0. Detailed household evacuation behaviors are modeled using a comprehensive decision-making module. Computation loads induced by the large number of evacuation vehicles are distributed by a parallelization scheme that involves partitioning the road network into subnetworks such that traffic updates in each subnetwork are simultaneously updated in parallel. Dynamic load balancing among different subnetworks is ensured by periodically repartitioning the network using a mutilevel graph partitioning algorithm. A predictive network-weighing scheme is developed that assigns weights (reflecting computational load) to the roads of a network based on current and predicted future network traffic loadings. An on-demand routing strategy is also developed that allows effective rerouting computation based on changing traffic patterns. A-RESCUE 2.0 is capable of representing nonevacuee background traffic, as well as uncertain events on the network like road closures. In addition, real-time monitoring of traffic patterns is made possible using a visualization module that is connected to the simulator through an efficient data communication layer. Comprehensive experiments are conducted on the Miami-Dade County network to validate the applicability of the developed simulator on real-world networks. Findings from experimental tests confirm that the parallelization scheme is effective in improving computational performance.
    publisherAmerican Society of Civil Engineers
    titleA-RESCUE 2.0: A High-Fidelity, Parallel, Agent-Based Evacuation Simulator
    typeJournal Paper
    journal volume33
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000802
    page04018059
    treeJournal of Computing in Civil Engineering:;2019:;Volume ( 033 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian