YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    System-Level Approach for Identifying Main Uncertainty Sources in Pavement Construction Life-Cycle Assessment for Quantifying Environmental Impacts

    Source: Journal of Construction Engineering and Management:;2019:;Volume ( 145 ):;issue: 002
    Author:
    Wonjae Yoo; Hasan Ozer; Youngjib Ham
    DOI: 10.1061/(ASCE)CO.1943-7862.0001598
    Publisher: American Society of Civil Engineers
    Abstract: Poor data quality in pavement construction life-cycle inventory (LCI) causes uncertainty in quantifying the associated environmental impact through life-cycle assessment (LCA). To reduce such LCA uncertainty while enhancing the reliability, several studies have been conducted on a screening procedure based on a quality assessment of the LCI input data to identify main sources of the resulting uncertainty. However, they often create additional uncertainty in the screening process and thus result in erroneous outcomes in identifying main uncertainty sources. This paper proposes a new system-level approach that enables the identification of main uncertainty sources through input data quality assessment upon reducing additional uncertainty. Based on the proposed preset criteria and by leveraging environmental emission quantities associated with each process, the authors first propose to achieve a consistent weighting process and then derive the system-level aggregated data quality indicator (ADQI). By utilizing the ADQI, system-level LCA uncertainty information is obtained through a modified beta distribution. The proposed method was evaluated through case studies on real-world pavement construction projects of the Illinois Tollway, and the main uncertainty sources, named key processes, were identified through sensitivity analyses. In the case studies, the plant operation, cement production, and binder production were identified as key processes in the given pavement construction project, contributing more than half of the total uncertainty resulting from poor data quality. Based on these findings, the proposed work is expected to help practitioners improve the reliability of pavement construction LCA through uncertainty-informed decision making to better reflect real project characteristics in the identified key processes.
    • Download: (395.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      System-Level Approach for Identifying Main Uncertainty Sources in Pavement Construction Life-Cycle Assessment for Quantifying Environmental Impacts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254662
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorWonjae Yoo; Hasan Ozer; Youngjib Ham
    date accessioned2019-03-10T12:01:18Z
    date available2019-03-10T12:01:18Z
    date issued2019
    identifier other%28ASCE%29CO.1943-7862.0001598.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254662
    description abstractPoor data quality in pavement construction life-cycle inventory (LCI) causes uncertainty in quantifying the associated environmental impact through life-cycle assessment (LCA). To reduce such LCA uncertainty while enhancing the reliability, several studies have been conducted on a screening procedure based on a quality assessment of the LCI input data to identify main sources of the resulting uncertainty. However, they often create additional uncertainty in the screening process and thus result in erroneous outcomes in identifying main uncertainty sources. This paper proposes a new system-level approach that enables the identification of main uncertainty sources through input data quality assessment upon reducing additional uncertainty. Based on the proposed preset criteria and by leveraging environmental emission quantities associated with each process, the authors first propose to achieve a consistent weighting process and then derive the system-level aggregated data quality indicator (ADQI). By utilizing the ADQI, system-level LCA uncertainty information is obtained through a modified beta distribution. The proposed method was evaluated through case studies on real-world pavement construction projects of the Illinois Tollway, and the main uncertainty sources, named key processes, were identified through sensitivity analyses. In the case studies, the plant operation, cement production, and binder production were identified as key processes in the given pavement construction project, contributing more than half of the total uncertainty resulting from poor data quality. Based on these findings, the proposed work is expected to help practitioners improve the reliability of pavement construction LCA through uncertainty-informed decision making to better reflect real project characteristics in the identified key processes.
    publisherAmerican Society of Civil Engineers
    titleSystem-Level Approach for Identifying Main Uncertainty Sources in Pavement Construction Life-Cycle Assessment for Quantifying Environmental Impacts
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001598
    page04018137
    treeJournal of Construction Engineering and Management:;2019:;Volume ( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian