YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Smartphones to Detect and Identify Construction Workers’ Near-Miss Falls Based on ANN

    Source: Journal of Construction Engineering and Management:;2019:;Volume ( 145 ):;issue: 001
    Author:
    Mingyuan Zhang; Tianzhuo Cao; Xuefeng Zhao
    DOI: 10.1061/(ASCE)CO.1943-7862.0001582
    Publisher: American Society of Civil Engineers
    Abstract: In certain circumstances, near-miss falls can evolve into fall accidents in construction sites. Insight into near-miss falls offers an efficient way to better understand fall accidents. In this context, this paper explores potential applications of the smartphone as a data-acquisition tool to detect and identify near-miss falls on the basis of an artificial neural network (ANN). In training and evaluation experiments, a loss-of-balance (LOB) environment was artificially established by means of a balance board to simulate the scenarios in near-miss falls. Through a transition model between static and dynamic near-miss falls, the similarity between simulated and actual scenes of near-miss falls was improved. Furthermore, the feasibility of adopting ANN to correctly identify near-miss falls was verified. The results showed that the average precision, recall, and F1 score were 90.02%, 90.93%, and 90.42%, respectively, with an average error-detection rate of 16.26%. In test cases, the thresholds H20% (0.07692) and H10% (0.06061) were acquired and illustrated from the perspective of probability. This approach, which demonstrates the feasibility of integrating smartphones and ANN to measure near-miss falls, will help detect near-miss fall events and identify hazardous elements and vulnerable workers. In addition, it provides a new perspective for measuring the relationship between near-miss falls and fall accidents quantitatively, laying a solid foundation for better understanding the occurrence mechanisms of both events.
    • Download: (1.889Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Smartphones to Detect and Identify Construction Workers’ Near-Miss Falls Based on ANN

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254644
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorMingyuan Zhang; Tianzhuo Cao; Xuefeng Zhao
    date accessioned2019-03-10T12:00:54Z
    date available2019-03-10T12:00:54Z
    date issued2019
    identifier other%28ASCE%29CO.1943-7862.0001582.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254644
    description abstractIn certain circumstances, near-miss falls can evolve into fall accidents in construction sites. Insight into near-miss falls offers an efficient way to better understand fall accidents. In this context, this paper explores potential applications of the smartphone as a data-acquisition tool to detect and identify near-miss falls on the basis of an artificial neural network (ANN). In training and evaluation experiments, a loss-of-balance (LOB) environment was artificially established by means of a balance board to simulate the scenarios in near-miss falls. Through a transition model between static and dynamic near-miss falls, the similarity between simulated and actual scenes of near-miss falls was improved. Furthermore, the feasibility of adopting ANN to correctly identify near-miss falls was verified. The results showed that the average precision, recall, and F1 score were 90.02%, 90.93%, and 90.42%, respectively, with an average error-detection rate of 16.26%. In test cases, the thresholds H20% (0.07692) and H10% (0.06061) were acquired and illustrated from the perspective of probability. This approach, which demonstrates the feasibility of integrating smartphones and ANN to measure near-miss falls, will help detect near-miss fall events and identify hazardous elements and vulnerable workers. In addition, it provides a new perspective for measuring the relationship between near-miss falls and fall accidents quantitatively, laying a solid foundation for better understanding the occurrence mechanisms of both events.
    publisherAmerican Society of Civil Engineers
    titleUsing Smartphones to Detect and Identify Construction Workers’ Near-Miss Falls Based on ANN
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001582
    page04018120
    treeJournal of Construction Engineering and Management:;2019:;Volume ( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian