YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Durability of Hollow-Core GFRP–Concrete–Steel Columns under Severe Weather Conditions

    Source: Journal of Composites for Construction:;2019:;Volume ( 023 ):;issue: 001
    Author:
    Song Wang; Mohamed A. ElGawady
    DOI: 10.1061/(ASCE)CC.1943-5614.0000913
    Publisher: American Society of Civil Engineers
    Abstract: One of the emerging applications of fiber-reinforced polymer (FRP) tubes is hollow-core FRP–concrete–steel (HC-FCS) columns. HC-FCS columns demonstrate superior advantages in material savings and mechanical behavior. However, the lack of long-term data for their durability performance hinders their greater acceptance. This study aims to investigate the degradation of HC-FCS cylinders under combined freeze-thaw, heating-cooling, and wet-dry cycles. Sustained axial loads were also applied to the cylinders during environmental conditioning to simulate the service dead load. Compression tests on cylinders were performed and split-disk tensile tests were performed on FRP rings for both conditioned and control specimens. The test results showed that the environmental conditioning slightly degraded the strength and vertical strain capacities of the HC-FCS cylinders, but caused pronounced degradation of the hoop strain capacities of the glass fiber–reinforced polymer (GFRP) tube. Investigating the microstructure of the FRP before and after conditioning revealed that no chemical reaction took place. However, damage to the interphase of fiber and resin led to damage of the fiber bond. This led to strain concentration and early rupture of the FRP. The sustained load had a negative effect on the cylinders, but had a more obvious effect on strain than on strength.
    • Download: (4.388Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Durability of Hollow-Core GFRP–Concrete–Steel Columns under Severe Weather Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254547
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorSong Wang; Mohamed A. ElGawady
    date accessioned2019-03-10T11:57:41Z
    date available2019-03-10T11:57:41Z
    date issued2019
    identifier other%28ASCE%29CC.1943-5614.0000913.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254547
    description abstractOne of the emerging applications of fiber-reinforced polymer (FRP) tubes is hollow-core FRP–concrete–steel (HC-FCS) columns. HC-FCS columns demonstrate superior advantages in material savings and mechanical behavior. However, the lack of long-term data for their durability performance hinders their greater acceptance. This study aims to investigate the degradation of HC-FCS cylinders under combined freeze-thaw, heating-cooling, and wet-dry cycles. Sustained axial loads were also applied to the cylinders during environmental conditioning to simulate the service dead load. Compression tests on cylinders were performed and split-disk tensile tests were performed on FRP rings for both conditioned and control specimens. The test results showed that the environmental conditioning slightly degraded the strength and vertical strain capacities of the HC-FCS cylinders, but caused pronounced degradation of the hoop strain capacities of the glass fiber–reinforced polymer (GFRP) tube. Investigating the microstructure of the FRP before and after conditioning revealed that no chemical reaction took place. However, damage to the interphase of fiber and resin led to damage of the fiber bond. This led to strain concentration and early rupture of the FRP. The sustained load had a negative effect on the cylinders, but had a more obvious effect on strain than on strength.
    publisherAmerican Society of Civil Engineers
    titleDurability of Hollow-Core GFRP–Concrete–Steel Columns under Severe Weather Conditions
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000913
    page04018078
    treeJournal of Composites for Construction:;2019:;Volume ( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian