YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurement and Comparative Study on Movements of Suspenders in Long-Span Suspension Bridges

    Source: Journal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 005
    Author:
    Zhongxiang Liu; Tong Guo; Matthew H. Hebdon; Wanshui Han
    DOI: 10.1061/(ASCE)BE.1943-5592.0001386
    Publisher: American Society of Civil Engineers
    Abstract: Unanticipated damage has been observed in short suspenders near the midspan and/or ends of long-span suspension bridges. The observed damage poses a major threat to public safety if it results in fracture of suspenders which, in extreme cases, may lead to the progressive collapse of a structure. This study presents an investigation of the vibrations of suspenders, stresses in the suspender lower ends, and movement of the main cable relative to the girder based on field measurements of the Jiangyin Yangtze River Bridge (JYB) to determine the excitation-induced responses and damage mechanisms of the suspender. The results revealed that longitudinal relative movement between the main cable and girder under repetitive traffic loads could result in cyclic local bending deformation and large stress concentrations in short suspender ends; however, for long suspenders that are more flexible, the bending deformation was distributed over a larger length, preventing high stress concentrations and subsequent fatigue damage. A comparative study was conducted on the Runyang suspension bridge (RSB), which is similar to the JYB except that rigid central clamps were substituted for the shortest suspenders at midspan to inhibit differential movement and damage of the short suspenders. Results demonstrate that the central clamp can significantly mitigate the bending stress in the short suspenders by reducing the relative motion between the main cable and girder in the RSB.
    • Download: (4.922Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurement and Comparative Study on Movements of Suspenders in Long-Span Suspension Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254531
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorZhongxiang Liu; Tong Guo; Matthew H. Hebdon; Wanshui Han
    date accessioned2019-03-10T11:57:00Z
    date available2019-03-10T11:57:00Z
    date issued2019
    identifier other%28ASCE%29BE.1943-5592.0001386.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254531
    description abstractUnanticipated damage has been observed in short suspenders near the midspan and/or ends of long-span suspension bridges. The observed damage poses a major threat to public safety if it results in fracture of suspenders which, in extreme cases, may lead to the progressive collapse of a structure. This study presents an investigation of the vibrations of suspenders, stresses in the suspender lower ends, and movement of the main cable relative to the girder based on field measurements of the Jiangyin Yangtze River Bridge (JYB) to determine the excitation-induced responses and damage mechanisms of the suspender. The results revealed that longitudinal relative movement between the main cable and girder under repetitive traffic loads could result in cyclic local bending deformation and large stress concentrations in short suspender ends; however, for long suspenders that are more flexible, the bending deformation was distributed over a larger length, preventing high stress concentrations and subsequent fatigue damage. A comparative study was conducted on the Runyang suspension bridge (RSB), which is similar to the JYB except that rigid central clamps were substituted for the shortest suspenders at midspan to inhibit differential movement and damage of the short suspenders. Results demonstrate that the central clamp can significantly mitigate the bending stress in the short suspenders by reducing the relative motion between the main cable and girder in the RSB.
    publisherAmerican Society of Civil Engineers
    titleMeasurement and Comparative Study on Movements of Suspenders in Long-Span Suspension Bridges
    typeJournal Paper
    journal volume24
    journal issue5
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001386
    page04019026
    treeJournal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian