YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Impact-Induced Relative Motion on Effective Barge Flotilla Mass

    Source: Journal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 004
    Author:
    George C. Kantrales; Michael T. Davidson; Gary R. Consolazio
    DOI: 10.1061/(ASCE)BE.1943-5592.0001374
    Publisher: American Society of Civil Engineers
    Abstract: Impact-induced loads associated with barge-to-bridge collisions frequently control the design of bridges spanning navigable waterways. To design for such loads, widely used bridge design standards use an approach in which impact loads are computed from the kinetic energy of either a single impacting barge or a multibarge flotilla. Within a flotilla, individual barges are arranged into columns and rows and are connected together with lashing elements, such as wire-rope cables. During impact these lashings elongate and may rupture, influencing the degree of overall flotilla mass that contributes to impact force generation. In this study, finite-element impact simulations are used to investigate lashing deformation and relative sliding between barge columns during flotilla impacts with bridge piers. After analytically quantifying the fraction of overall vessel mass, which contributes to impact load generation, an “effective flotilla mass” is formulated for use in bridge design. Importantly, the majority of impact simulation results indicate that the effective flotilla mass is nearly equal to total flotilla mass rather than the impacting-column mass presently assumed by bridge design standards.
    • Download: (1.701Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Impact-Induced Relative Motion on Effective Barge Flotilla Mass

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254522
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorGeorge C. Kantrales; Michael T. Davidson; Gary R. Consolazio
    date accessioned2019-03-10T11:56:16Z
    date available2019-03-10T11:56:16Z
    date issued2019
    identifier other%28ASCE%29BE.1943-5592.0001374.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254522
    description abstractImpact-induced loads associated with barge-to-bridge collisions frequently control the design of bridges spanning navigable waterways. To design for such loads, widely used bridge design standards use an approach in which impact loads are computed from the kinetic energy of either a single impacting barge or a multibarge flotilla. Within a flotilla, individual barges are arranged into columns and rows and are connected together with lashing elements, such as wire-rope cables. During impact these lashings elongate and may rupture, influencing the degree of overall flotilla mass that contributes to impact force generation. In this study, finite-element impact simulations are used to investigate lashing deformation and relative sliding between barge columns during flotilla impacts with bridge piers. After analytically quantifying the fraction of overall vessel mass, which contributes to impact load generation, an “effective flotilla mass” is formulated for use in bridge design. Importantly, the majority of impact simulation results indicate that the effective flotilla mass is nearly equal to total flotilla mass rather than the impacting-column mass presently assumed by bridge design standards.
    publisherAmerican Society of Civil Engineers
    titleInfluence of Impact-Induced Relative Motion on Effective Barge Flotilla Mass
    typeJournal Paper
    journal volume24
    journal issue4
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001374
    page04019019
    treeJournal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian