YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Field Application of Magnet-Based Smart Rock for Bridge Scour Monitoring

    Source: Journal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 004
    Author:
    Fujian Tang; Yizheng Chen; Chuanrui Guo; Liang Fan; Genda Chen; Yan Tang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001366
    Publisher: American Society of Civil Engineers
    Abstract: In this study, a smart rock, which is a magnet embedded in a concrete ball and whose direction is always pointing downwards, is proposed to monitor bridge scour depth. Based on the theory of magnetic field, the distribution of the magnet-induced magnetic field (MMF) induced by the smart rock was derived. An algorithm was developed to localize the position of the smart rock. Field tests were conducted at a bridge pier at three different times. Both the intensities of the ambient magnetic field (AMF) and the total magnetic field (TMF) were measured with a magnetometer. Results showed that the presence of steel reinforcement or steel girders in the bridge changed the distribution of the geomagnetic field. The algorithm successfully localized the position of the smart rock with an error ranging from 0.26 to 0.33 m, which satisfied the requirement for engineering applications. The effective monitoring range depends on the variation of the AMF, and the maximum monitoring depth ranged from 11.5 to 8.5 m as the standard deviation of the AMF increased from 32.3 to 80.75 nT.
    • Download: (3.117Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Field Application of Magnet-Based Smart Rock for Bridge Scour Monitoring

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254514
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorFujian Tang; Yizheng Chen; Chuanrui Guo; Liang Fan; Genda Chen; Yan Tang
    date accessioned2019-03-10T11:56:02Z
    date available2019-03-10T11:56:02Z
    date issued2019
    identifier other%28ASCE%29BE.1943-5592.0001366.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254514
    description abstractIn this study, a smart rock, which is a magnet embedded in a concrete ball and whose direction is always pointing downwards, is proposed to monitor bridge scour depth. Based on the theory of magnetic field, the distribution of the magnet-induced magnetic field (MMF) induced by the smart rock was derived. An algorithm was developed to localize the position of the smart rock. Field tests were conducted at a bridge pier at three different times. Both the intensities of the ambient magnetic field (AMF) and the total magnetic field (TMF) were measured with a magnetometer. Results showed that the presence of steel reinforcement or steel girders in the bridge changed the distribution of the geomagnetic field. The algorithm successfully localized the position of the smart rock with an error ranging from 0.26 to 0.33 m, which satisfied the requirement for engineering applications. The effective monitoring range depends on the variation of the AMF, and the maximum monitoring depth ranged from 11.5 to 8.5 m as the standard deviation of the AMF increased from 32.3 to 80.75 nT.
    publisherAmerican Society of Civil Engineers
    titleField Application of Magnet-Based Smart Rock for Bridge Scour Monitoring
    typeJournal Paper
    journal volume24
    journal issue4
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001366
    page04019015
    treeJournal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian