YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Bus Speed Using a Multivariate Conditional Autoregressive Model: Contributing Factors and Spatiotemporal Correlation

    Source: Journal of Transportation Engineering, Part A: Systems:;2019:;Volume ( 145 ):;issue: 004
    Author:
    Haipeng Cui; Kun Xie; Bin Hu; Hangfei Lin; Rui Zhang
    DOI: 10.1061/JTEPBS.0000226
    Publisher: American Society of Civil Engineers
    Abstract: Bus speed indicates the performance of bus systems. Exploring the impact of contributing factors to bus speed can provide public transit agencies insights into developing improvement strategies. Bus speed observations can be correlated both spatially and temporally, but their dependence has generally been neglected. This paper proposes a novel multivariate conditional autoregressive (MCAR) model to jointly account for spatial and temporal correlations of bus speeds extracted from large-scale Global Positioning System data. The proposed MCAR model is compared with the univariate conditional autoregressive model, which only accounts for spatial correlation, and the linear regression model, which assumes independent speed observations. Results show that the MCAR model outperforms the other models by presenting a much lower deviance information criterion (DIC) value and smaller prediction errors. This confirms the necessity of addressing the spatiotemporal correlation when modeling bus speeds. Driveway density, number of bus routes, bus stop density, signal effect, and bus volume are found to affect bus speed significantly in the MCAR model. Furthermore, how the distance affects the spatial correlation is investigated by specifying different spatial correlation weight (SCW) matrices. It is found that the MCAR model with SCWs generated from the radial basis function (RBF) can yield better outcomes than one using inverse distance. The optimal shape parameter of the RBF is found to be within a range of 1–2 km. Specifically, if the shape parameter equals 2 km, the SCW of two road segments is approximately 0.88 when their midpoints are 1 km from each other.
    • Download: (760.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Bus Speed Using a Multivariate Conditional Autoregressive Model: Contributing Factors and Spatiotemporal Correlation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254503
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorHaipeng Cui; Kun Xie; Bin Hu; Hangfei Lin; Rui Zhang
    date accessioned2019-03-10T11:55:25Z
    date available2019-03-10T11:55:25Z
    date issued2019
    identifier otherJTEPBS.0000226.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254503
    description abstractBus speed indicates the performance of bus systems. Exploring the impact of contributing factors to bus speed can provide public transit agencies insights into developing improvement strategies. Bus speed observations can be correlated both spatially and temporally, but their dependence has generally been neglected. This paper proposes a novel multivariate conditional autoregressive (MCAR) model to jointly account for spatial and temporal correlations of bus speeds extracted from large-scale Global Positioning System data. The proposed MCAR model is compared with the univariate conditional autoregressive model, which only accounts for spatial correlation, and the linear regression model, which assumes independent speed observations. Results show that the MCAR model outperforms the other models by presenting a much lower deviance information criterion (DIC) value and smaller prediction errors. This confirms the necessity of addressing the spatiotemporal correlation when modeling bus speeds. Driveway density, number of bus routes, bus stop density, signal effect, and bus volume are found to affect bus speed significantly in the MCAR model. Furthermore, how the distance affects the spatial correlation is investigated by specifying different spatial correlation weight (SCW) matrices. It is found that the MCAR model with SCWs generated from the radial basis function (RBF) can yield better outcomes than one using inverse distance. The optimal shape parameter of the RBF is found to be within a range of 1–2 km. Specifically, if the shape parameter equals 2 km, the SCW of two road segments is approximately 0.88 when their midpoints are 1 km from each other.
    publisherAmerican Society of Civil Engineers
    titleAnalysis of Bus Speed Using a Multivariate Conditional Autoregressive Model: Contributing Factors and Spatiotemporal Correlation
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000226
    page04019009
    treeJournal of Transportation Engineering, Part A: Systems:;2019:;Volume ( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian