YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model Test and Optimal Design of the Joint in a Sunflower Arch Bridge

    Source: Journal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 002
    Author:
    Yonghui Huang; Jiyang Fu; Airong Liu; Rui Rao; Di Wu; Jianwen Shen
    DOI: 10.1061/(ASCE)BE.1943-5592.0001349
    Publisher: American Society of Civil Engineers
    Abstract: The sunflower arch bridge is a new type of reinforced concrete arch bridge that has been developed recently. Because of the complex constructional details, the stress distribution at the joint between the main arch and spandrel arch is very complicated. To explore the mechanical behavior of this new type of arch bridge, particularly the stress state at the joint of the arch, a 1:5-scaled model of a segment for a sunflower arch bridge was tested. The displacements and stresses at key locations of the tested model were recorded. The experimental results showed that the displacements of the main arch and spandrel arch under dead loads were notably small, which indicated that the global stiffness of the arch was sufficiently large. Moreover, the maximum tensile stress at the end of the spandrel arch subjected to dead loads was larger than the tensile strength of the concrete; therefore, the concrete in these regions is vulnerable to cracking. To avoid cracks at the end of the spandrel arch, an optimized design scheme was proposed for the joint using a steel I-beam to replace the concrete at the end of the spandrel arch. Design parameters were also suggested through a comprehensive parametric investigation based on finite-element analysis (FEA).
    • Download: (5.164Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model Test and Optimal Design of the Joint in a Sunflower Arch Bridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254380
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorYonghui Huang; Jiyang Fu; Airong Liu; Rui Rao; Di Wu; Jianwen Shen
    date accessioned2019-03-10T11:51:12Z
    date available2019-03-10T11:51:12Z
    date issued2019
    identifier other%28ASCE%29BE.1943-5592.0001349.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254380
    description abstractThe sunflower arch bridge is a new type of reinforced concrete arch bridge that has been developed recently. Because of the complex constructional details, the stress distribution at the joint between the main arch and spandrel arch is very complicated. To explore the mechanical behavior of this new type of arch bridge, particularly the stress state at the joint of the arch, a 1:5-scaled model of a segment for a sunflower arch bridge was tested. The displacements and stresses at key locations of the tested model were recorded. The experimental results showed that the displacements of the main arch and spandrel arch under dead loads were notably small, which indicated that the global stiffness of the arch was sufficiently large. Moreover, the maximum tensile stress at the end of the spandrel arch subjected to dead loads was larger than the tensile strength of the concrete; therefore, the concrete in these regions is vulnerable to cracking. To avoid cracks at the end of the spandrel arch, an optimized design scheme was proposed for the joint using a steel I-beam to replace the concrete at the end of the spandrel arch. Design parameters were also suggested through a comprehensive parametric investigation based on finite-element analysis (FEA).
    publisherAmerican Society of Civil Engineers
    titleModel Test and Optimal Design of the Joint in a Sunflower Arch Bridge
    typeJournal Paper
    journal volume24
    journal issue2
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001349
    page04018121
    treeJournal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian