contributor author | Cunming Ma; Yangzhao Liu; Ngai Yeung; Qiusheng Li | |
date accessioned | 2019-03-10T11:50:48Z | |
date available | 2019-03-10T11:50:48Z | |
date issued | 2019 | |
identifier other | %28ASCE%29BE.1943-5592.0001348.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4254369 | |
description abstract | This article presents an experimental investigation of a free-standing single-column bridge tower with chamfered square cross sections in smooth flow, with a particular focus on its aerodynamic characterization. First, a sectional model test with a scale ratio of 1:30 was conducted to determine the static force coefficients and across-wind aerodynamic damping features. In addition, a 1:80 scaled full aeroelastic model was employed to estimate its aeroelastic response characteristics. The experimental results reveal the occurrence of interactions between three-dimensional third-mode vortex-induced vibration (VIV) and first-mode galloping, which have rarely been reported in early documentation. However, the understanding in terms of the mechanism of such VIV–galloping interaction is still insufficient. Moreover, two types of aerodynamic stability countermeasures, namely, curved guide vanes and vertical fins, were proposed, and their effects on structural aerodynamic stability were examined. In general, it was found that the installation of curved guide vanes is more advantageous in terms of improving the aerodynamic stability of the structure. | |
publisher | American Society of Civil Engineers | |
title | Experimental Study of Across-Wind Aerodynamic Behavior of a Bridge Tower | |
type | Journal Paper | |
journal volume | 24 | |
journal issue | 2 | |
journal title | Journal of Bridge Engineering | |
identifier doi | 10.1061/(ASCE)BE.1943-5592.0001348 | |
page | 04018116 | |
tree | Journal of Bridge Engineering:;2019:;Volume ( 024 ):;issue: 002 | |
contenttype | Fulltext | |