YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Framework for Collapse Vulnerability Assessment of Steel Beams Subjected to Increasing Loads and Nonuniform Longitudinal Temperature

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 005
    Author:
    Mona Hemmati; Hussam N. Mahmoud
    DOI: 10.1061/(ASCE)ST.1943-541X.0002287
    Publisher: American Society of Civil Engineers
    Abstract: Steel beams are susceptible to large deformation and capacity reduction when subjected to elevated temperatures. Determination of collapse loads for structural steel members under fire is critical for realistic assessment of system vulnerabilities. Such determination, however, should be conducted within a probabilistic framework that allows for the integration of various uncertainties influencing the behavior. In addition, the assessment should address realistic fire exposure that arises due to typical fire scenarios. To date, evaluation of the collapse load of beams in the presence or absence of uncertainties under nonuniform temperature is lacking. This paper presents a new analytical formulation, based on virtual work, for calculating the collapse load of beams subjected to nonuniform longitudinal temperature distribution. Moreover, a new probabilistic framework is devised to generate fragility surfaces for beams under combined fire and applied loads. Randomness in load and resistance including applied mechanical loads, compartment ventilation, compartment geometry, and thermal characteristics of surrounding surfaces are accounted for by including the statistical variations in these parameters. Comparisons of collapse loads calculated using the proposed approach and those calculated using a commercial finite element software show excellent correlation. The outlined framework can allow structural and fire engineers to rapidly evaluate the collapse load and mechanism of beams under a nonuniform temperature distribution.
    • Download: (2.522Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Framework for Collapse Vulnerability Assessment of Steel Beams Subjected to Increasing Loads and Nonuniform Longitudinal Temperature

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254315
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMona Hemmati; Hussam N. Mahmoud
    date accessioned2019-03-10T11:49:02Z
    date available2019-03-10T11:49:02Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002287.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254315
    description abstractSteel beams are susceptible to large deformation and capacity reduction when subjected to elevated temperatures. Determination of collapse loads for structural steel members under fire is critical for realistic assessment of system vulnerabilities. Such determination, however, should be conducted within a probabilistic framework that allows for the integration of various uncertainties influencing the behavior. In addition, the assessment should address realistic fire exposure that arises due to typical fire scenarios. To date, evaluation of the collapse load of beams in the presence or absence of uncertainties under nonuniform temperature is lacking. This paper presents a new analytical formulation, based on virtual work, for calculating the collapse load of beams subjected to nonuniform longitudinal temperature distribution. Moreover, a new probabilistic framework is devised to generate fragility surfaces for beams under combined fire and applied loads. Randomness in load and resistance including applied mechanical loads, compartment ventilation, compartment geometry, and thermal characteristics of surrounding surfaces are accounted for by including the statistical variations in these parameters. Comparisons of collapse loads calculated using the proposed approach and those calculated using a commercial finite element software show excellent correlation. The outlined framework can allow structural and fire engineers to rapidly evaluate the collapse load and mechanism of beams under a nonuniform temperature distribution.
    publisherAmerican Society of Civil Engineers
    titleA Framework for Collapse Vulnerability Assessment of Steel Beams Subjected to Increasing Loads and Nonuniform Longitudinal Temperature
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002287
    page04019017
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian