YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Testing of a Replaceable Brace Module for Seismically Designed Concentrically Braced Steel Frames

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 004
    Author:
    Daniel Stevens; Lydell Wiebe
    DOI: 10.1061/(ASCE)ST.1943-541X.0002283
    Publisher: American Society of Civil Engineers
    Abstract: For a seismically designed concentrically braced frame with hollow structural sections as braces, the typical connection design consists of a slotted brace that is field welded to a gusset plate. During an earthquake, the brace is expected to buckle out-of-plane and the gusset plate is expected to yield. This makes it difficult to repair or replace the brace and connection, and the out-of-plane brace buckling caused by this connection can also damage surrounding walls and cladding, with potential life safety implications. This paper proposes an alternative connection that is expected to result in reduced erection costs by avoiding site welding, and also to simplify structural repairs following a major earthquake by confining all damage to a replaceable brace module. Additionally, the new connection causes the brace to buckle in-plane during a seismic event, reducing the potential for damage to the surrounding walls and cladding. This paper discusses large-scale quasi-static cyclic testing of eight brace modules with two variations of the new connection, one with a single-shear eccentric splice and the other with a double-sided concentric splice. All tested specimens had the desired failure progression and buckled in-plane, as intended. Bolt slip in the connection had very little effect on the overall force-deflection response after the brace compressive strength degraded to less than the slip load. The brace module was replaced after each test without observable damage outside the module. Although both connection variations behaved in a desirable manner, the single-shear eccentric splice was preferred because of the simpler constructability and improved performance.
    • Download: (1.223Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Testing of a Replaceable Brace Module for Seismically Designed Concentrically Braced Steel Frames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254310
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorDaniel Stevens; Lydell Wiebe
    date accessioned2019-03-10T11:48:49Z
    date available2019-03-10T11:48:49Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002283.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254310
    description abstractFor a seismically designed concentrically braced frame with hollow structural sections as braces, the typical connection design consists of a slotted brace that is field welded to a gusset plate. During an earthquake, the brace is expected to buckle out-of-plane and the gusset plate is expected to yield. This makes it difficult to repair or replace the brace and connection, and the out-of-plane brace buckling caused by this connection can also damage surrounding walls and cladding, with potential life safety implications. This paper proposes an alternative connection that is expected to result in reduced erection costs by avoiding site welding, and also to simplify structural repairs following a major earthquake by confining all damage to a replaceable brace module. Additionally, the new connection causes the brace to buckle in-plane during a seismic event, reducing the potential for damage to the surrounding walls and cladding. This paper discusses large-scale quasi-static cyclic testing of eight brace modules with two variations of the new connection, one with a single-shear eccentric splice and the other with a double-sided concentric splice. All tested specimens had the desired failure progression and buckled in-plane, as intended. Bolt slip in the connection had very little effect on the overall force-deflection response after the brace compressive strength degraded to less than the slip load. The brace module was replaced after each test without observable damage outside the module. Although both connection variations behaved in a desirable manner, the single-shear eccentric splice was preferred because of the simpler constructability and improved performance.
    publisherAmerican Society of Civil Engineers
    titleExperimental Testing of a Replaceable Brace Module for Seismically Designed Concentrically Braced Steel Frames
    typeJournal Paper
    journal volume145
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002283
    page04019012
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian