YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Power Spectral-Density Model for Pedestrian Walking Load

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 002
    Author:
    Jun Chen; Jinping Wang; James M. W. Brownjohn
    DOI: 10.1061/(ASCE)ST.1943-541X.0002248
    Publisher: American Society of Civil Engineers
    Abstract: Intensive vibrations may occur in slender structures like footbridges and long-span floors due to movement of pedestrians. Problems are usually treated in the time domain as Fourier series models of the forcing function, but most methods have disadvantages of neglecting the stochastic character of human walking, being computationally inefficient for random vibration analysis, and overestimating responses in the case of resonance. Meanwhile, frequency-domain models of other types of structural loading are efficient while being a more acceptable approach widely adopted for dealing with stochastic response problems. Hence, an experiment-based power spectral-density (PSD) model normalized to walking frequency and order of harmonic is proposed. To construct this model, 1,528 individual walking-load time histories were collected from an experiment on a rigid floor. These records were then linked to obtain a smaller number of longer samples for a good frequency resolution in spectral analysis. Using the linked samples and for a frequency normalized to mean walking frequency, PSD models in the range 1±0.05 for the harmonic and subharmonic are suggested as a Gaussian mixture with eight model parameters. Via the stationary and nonstationary stochastic vibration theory, the proposed model is used to predict the structural response in terms of root-mean square and peak of acceleration. The framework is finally tested via field measurements demonstrating applicability in practical design work.
    • Download: (2.537Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Power Spectral-Density Model for Pedestrian Walking Load

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254273
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJun Chen; Jinping Wang; James M. W. Brownjohn
    date accessioned2019-03-10T11:47:22Z
    date available2019-03-10T11:47:22Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002248.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254273
    description abstractIntensive vibrations may occur in slender structures like footbridges and long-span floors due to movement of pedestrians. Problems are usually treated in the time domain as Fourier series models of the forcing function, but most methods have disadvantages of neglecting the stochastic character of human walking, being computationally inefficient for random vibration analysis, and overestimating responses in the case of resonance. Meanwhile, frequency-domain models of other types of structural loading are efficient while being a more acceptable approach widely adopted for dealing with stochastic response problems. Hence, an experiment-based power spectral-density (PSD) model normalized to walking frequency and order of harmonic is proposed. To construct this model, 1,528 individual walking-load time histories were collected from an experiment on a rigid floor. These records were then linked to obtain a smaller number of longer samples for a good frequency resolution in spectral analysis. Using the linked samples and for a frequency normalized to mean walking frequency, PSD models in the range 1±0.05 for the harmonic and subharmonic are suggested as a Gaussian mixture with eight model parameters. Via the stationary and nonstationary stochastic vibration theory, the proposed model is used to predict the structural response in terms of root-mean square and peak of acceleration. The framework is finally tested via field measurements demonstrating applicability in practical design work.
    publisherAmerican Society of Civil Engineers
    titlePower Spectral-Density Model for Pedestrian Walking Load
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002248
    page04018239
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian