YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Full-Scale Testing of a Viscoelastic Coupling Damper for High-Rise Building Applications and Comparative Evaluation of Different Numerical Models

    Source: Journal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 002
    Author:
    Deepak R. Pant; Michael Montgomery; Constantin Christopoulos
    DOI: 10.1061/(ASCE)ST.1943-541X.0002246
    Publisher: American Society of Civil Engineers
    Abstract: Viscoelastic coupling dampers (VCDs) are used for the seismic and wind protection of tall buildings. In the past, several tests have been carried out on VCDs under severe loading conditions for concept validation purposes and different numerical models have been used for evaluating the performance of tall buildings with VCDs. Nonetheless, for practical applications understanding the performance of VCDs over a full range of demands including extremely small amplitudes of vibration, long-duration loading, and realistic well-defined design level seismic and wind events, as well as a comparative evaluation of different numerical models are needed. To address this research gap, a systematic study was carried out to understand the performance of VCDs based on full-scale tests and to assess the suitability of different numerical models in predicting their response. A range of displacement-controlled tests was carried out on a full-scale VCD specimen. Seismic loading was derived by considering both far-fault long-period long-duration ground motions as well as near-fault pulse-like ground motions that were developed based on a site-specific study and were scaled to represent the design earthquake (DE) and the risk-targeted maximum considered earthquake (MCER) levels for a real project. Long-duration wind loading of 6-h with 1-, 10-, 50-, and 500-year mean recurrence intervals (per Canadian practice) developed based on wind tunnel testing of another real project were used. The temperature rise in the specimen during the tests was measured using high-precision thermocouples embedded in the viscoelastic (VE) layers as well as an external thermal camera. The test results indicated well-defined force-deformation hystereses of the specimen at all levels of strain amplitudes including those at extremely small deformation amplitudes up to 2.5  μm of deformation. The temperature rise of the specimen was less than 1°C and 4°C, respectively for the earthquake and wind loadings representative of the real projects that were considered in this study. This temperature rise was found to be lower when compared with previous generations of VE materials, which were tested under loading representative of shorter buildings with higher fundamental frequencies. Finally, the accuracy of four different macroscopic numerical models with different degrees of complexities in simulating the test results was investigated. Different numerical models were found to be suitable for different loading conditions and recommendations are provided for practical nonlinear modeling of tall buildings with VE dampers.
    • Download: (3.492Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Full-Scale Testing of a Viscoelastic Coupling Damper for High-Rise Building Applications and Comparative Evaluation of Different Numerical Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254271
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorDeepak R. Pant; Michael Montgomery; Constantin Christopoulos
    date accessioned2019-03-10T11:47:06Z
    date available2019-03-10T11:47:06Z
    date issued2019
    identifier other%28ASCE%29ST.1943-541X.0002246.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254271
    description abstractViscoelastic coupling dampers (VCDs) are used for the seismic and wind protection of tall buildings. In the past, several tests have been carried out on VCDs under severe loading conditions for concept validation purposes and different numerical models have been used for evaluating the performance of tall buildings with VCDs. Nonetheless, for practical applications understanding the performance of VCDs over a full range of demands including extremely small amplitudes of vibration, long-duration loading, and realistic well-defined design level seismic and wind events, as well as a comparative evaluation of different numerical models are needed. To address this research gap, a systematic study was carried out to understand the performance of VCDs based on full-scale tests and to assess the suitability of different numerical models in predicting their response. A range of displacement-controlled tests was carried out on a full-scale VCD specimen. Seismic loading was derived by considering both far-fault long-period long-duration ground motions as well as near-fault pulse-like ground motions that were developed based on a site-specific study and were scaled to represent the design earthquake (DE) and the risk-targeted maximum considered earthquake (MCER) levels for a real project. Long-duration wind loading of 6-h with 1-, 10-, 50-, and 500-year mean recurrence intervals (per Canadian practice) developed based on wind tunnel testing of another real project were used. The temperature rise in the specimen during the tests was measured using high-precision thermocouples embedded in the viscoelastic (VE) layers as well as an external thermal camera. The test results indicated well-defined force-deformation hystereses of the specimen at all levels of strain amplitudes including those at extremely small deformation amplitudes up to 2.5  μm of deformation. The temperature rise of the specimen was less than 1°C and 4°C, respectively for the earthquake and wind loadings representative of the real projects that were considered in this study. This temperature rise was found to be lower when compared with previous generations of VE materials, which were tested under loading representative of shorter buildings with higher fundamental frequencies. Finally, the accuracy of four different macroscopic numerical models with different degrees of complexities in simulating the test results was investigated. Different numerical models were found to be suitable for different loading conditions and recommendations are provided for practical nonlinear modeling of tall buildings with VE dampers.
    publisherAmerican Society of Civil Engineers
    titleFull-Scale Testing of a Viscoelastic Coupling Damper for High-Rise Building Applications and Comparative Evaluation of Different Numerical Models
    typeJournal Paper
    journal volume145
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002246
    page04018242
    treeJournal of Structural Engineering:;2019:;Volume ( 145 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian