Show simple item record

contributor authorZaky, M. A.
contributor authorDoha, E. H.
contributor authorTenreiro Machado, J. A.
date accessioned2019-02-28T11:12:14Z
date available2019-02-28T11:12:14Z
date copyright8/22/2018 12:00:00 AM
date issued2018
identifier issn1555-1415
identifier othercnd_013_10_101007.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253786
description abstractIn this paper, we construct and analyze a Legendre spectral-collocation method for the numerical solution of distributed-order fractional initial value problems. We first introduce three-term recurrence relations for the fractional integrals of the Legendre polynomial. We then use the properties of the Caputo fractional derivative to reduce the problem into a distributed-order fractional integral equation. We apply the Legendre–Gauss quadrature formula to compute the distributed-order fractional integral and construct the collocation scheme. The convergence of the proposed method is discussed. Numerical results are provided to give insights into the convergence behavior of our method.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Spectral Numerical Method for Solving Distributed-Order Fractional Initial Value Problems
typeJournal Paper
journal volume13
journal issue10
journal titleJournal of Computational and Nonlinear Dynamics
identifier doi10.1115/1.4041030
journal fristpage101007
journal lastpage101007-6
treeJournal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record