Show simple item record

contributor authorElinger, Jared
contributor authorRogers, Jonathan
date accessioned2019-02-28T11:11:43Z
date available2019-02-28T11:11:43Z
date copyright5/30/2018 12:00:00 AM
date issued2018
identifier issn1555-1415
identifier othercnd_013_07_071005.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253687
description abstractParameter estimation and model order reduction (MOR) are important system identification techniques used in the development of models for mechanical systems. A variety of classical parameter estimation and MOR methods are available for nonlinear systems but performance generally suffers when little is known about the system model a priori. Recent advancements in information theory have yielded a quantity called causation entropy (CSE), which is a measure of influence between elements in a multivariate time series. In parameter estimation problems involving dynamic systems, CSE can be used to identify which state transition functions in a discrete-time model are important in driving the system dynamics, leading to reductions in the dimensionality of the parameter space. This method can likewise be used in black box system identification problems to reduce model order and limit issues with overfitting. Building on the previous work, this paper illustrates the use of CSE-enabled parameter estimation for nonlinear mechanical systems of varying complexity. Furthermore, an extension to black-box system identification is proposed wherein CSE is used to identify the proper model order of parameterized black-box models. This technique is illustrated using nonlinear differential equation (NDE) models of physical devices, including a nonlinear spring–mass–damper, a pendulum, and a nonlinear model of a car suspension. Overall, the results show that CSE is a promising new tool for both gray-box and black-box system identification that can speed convergence toward a parameter solution and mitigate problems with model overfitting.
publisherThe American Society of Mechanical Engineers (ASME)
titleInformation Theoretic Causality Measures for System Identification of Mechanical Systems
typeJournal Paper
journal volume13
journal issue7
journal titleJournal of Computational and Nonlinear Dynamics
identifier doi10.1115/1.4040253
journal fristpage71005
journal lastpage071005-12
treeJournal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record