Show simple item record

contributor authorConnizzo, Brianne K.
contributor authorGrodzinsky, Alan J.
date accessioned2019-02-28T11:09:17Z
date available2019-02-28T11:09:17Z
date copyright2/15/2018 12:00:00 AM
date issued2018
identifier issn0148-0731
identifier otherbio_140_05_051002.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253254
description abstractRotator cuff disorders are one of the most common causes of shoulder pain and disability in the aging population but, unfortunately, the etiology is still unknown. One factor thought to contribute to the progression of disease is the external compression of the rotator cuff tendons, which can be significantly increased by age-related changes such as muscle weakness and poor posture. The objective of this study was to investigate the baseline compressive response of tendon and determine how this response is altered during maturation and aging. We did this by characterizing the compressive mechanical, viscoelastic, and poroelastic properties of young, mature, and aged mouse supraspinatus tendons using macroscale indentation testing and nanoscale high-frequency AFM-based rheology testing. Using these multiscale techniques, we found that aged tendons were stiffer than their mature counterparts and that both young and aged tendons exhibited increased hydraulic permeability and energy dissipation. We hypothesize that regional and age-related variations in collagen morphology and organization are likely responsible for changes in the multiscale compressive response as these structural parameters may affect fluid flow. Importantly, these results suggest a role for age-related changes in the progression of tendon degeneration, and we hypothesize that decreased ability to resist compressive loading via fluid pressurization may result in damage to the extracellular matrix (ECM) and ultimately tendon degeneration. These studies provide insight into the regional multiscale compressive response of tendons and indicate that altered compressive properties in aging tendons may be a major contributor to overall tendon degeneration.
publisherThe American Society of Mechanical Engineers (ASME)
titleMultiscale Poroviscoelastic Compressive Properties of Mouse Supraspinatus Tendons Are Altered in Young and Aged Mice
typeJournal Paper
journal volume140
journal issue5
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4038745
journal fristpage51002
journal lastpage051002-8
treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record