description abstract | The so-called in-vessel retention (IVR) was considered as a severe accident management strategy and had been certified by Nuclear Regulatory Commission (NRC) in U.S. as a standard measure for severe accident management since 1996. In the core meltdown accident, the reactor pressure vessel (RPV) integrity should be ensured during the prescribed time of 72 h. However, in traditional concept of IVR, several factors that affect the RPV failure were not considered in the structural safety assessment, including the effect of corium crust on the RPV failure. Actually, the crust strength is of significant importance in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the lower head (LH) of the RPV. Consequently, the RPV integrity is significantly influenced by the crust. A strong, coherent crust anchored to the RPV walls could allow the yet-molten corium to fall away from the crust as it erodes the RPV, therefore thermally decoupling the melt pool from the coolant and sharply reducing the cooling rate. Due to the thermal resistance of the crust layer, it somewhat prevents further attack of melt pool from the RPV. In the present study, the effect of crust on RPV structural behaviors was examined under multilayered crust formation conditions with consideration of detailed thermal characteristics, such as high-temperature gradient across the wall thickness. Thereafter, systematic finite element analyses and subsequent damage evaluation with varying parameters were performed on a representative RPV to figure out the possibility of high temperature induced failures with the effect of crust layer. | |