Show simple item record

contributor authorGao, Fei
contributor authorLiu, Yannan
contributor authorLiao, Wei-Hsin
date accessioned2019-02-28T11:03:24Z
date available2019-02-28T11:03:24Z
date copyright3/9/2018 12:00:00 AM
date issued2018
identifier issn1050-0472
identifier othermd_140_05_055001.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252185
description abstractIn this paper, a powered ankle-foot prosthesis with nonlinear parallel spring mechanism is developed. The parallel spring mechanism is used for reducing the energy consumption and power requirement of the motor, at the same time simplifying control of the prosthesis. To achieve that goal, the parallel spring mechanism is implemented as a compact cam-spring mechanism that is designed to imitate human ankle dorsiflexion stiffness. The parallel spring mechanism can store the negative mechanical energy in controlled dorsiflexion (CD) phase and release it to assist the motor in propelling a human body forward in a push-off phase (PP). Consequently, the energy consumption and power requirements of the motor are both decreased. To obtain this desired behavior, a new design method is proposed for generating the cam profile. Unlike the existing design methods, the friction force is considered here. The cam profile is decomposed into several segments, and each segment is fitted by a quadratic Bezier curve. Experimental results show that the cam-spring mechanism can mimic the desired torque characteristics in the CD phase (a loading process) more precisely. Finally, the developed prosthesis is tested on a unilateral below-knee amputee. Results indicate that, with the assistance of the parallel spring mechanism, the motor is powered off and control is not needed in the CD phase. In addition, the peak power and energy consumption of the motor are decreased by approximately 37.5% and 34.6%, respectively.
publisherThe American Society of Mechanical Engineers (ASME)
titleDesign of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
typeJournal Paper
journal volume140
journal issue5
journal titleJournal of Mechanical Design
identifier doi10.1115/1.4039385
journal fristpage55001
journal lastpage055001-8
treeJournal of Mechanical Design:;2018:;volume( 140 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record