description abstract | In this study, we analyzed the flow-back resistance of slick water fracturing fluid in shale reservoirs. The flow-back resistance mainly includes capillary force, Van der Waals (VDW) force, hydrogen bond force, and hydration stress. Shale of Lower Silurian Longmaxi Formation (LSLF) was used to study its wettability, hydration stress, and permeability change with time of slick water treatment. The results reveal that wettability of LSLF shale was more oil-wet before immersion, while it becomes more water-wet after immersion. The hydration stress of the shale increased with increasing immersion time. The permeability decreased first, then recovered with increasing immersion time. The major reason for permeability recovery is that the capillary effect (wettability) and the shale hydration make macrocracks extension and expansion and hydration-induced fractures formation. | |