YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generalized Flexible Method for Simulating Transient Pipe Network Hydraulics

    Source: Journal of Hydraulic Engineering:;2018:;Volume ( 144 ):;issue: 007
    Author:
    Nault J. D.;Karney B. W.;Jung B.-S.
    DOI: 10.1061/(ASCE)HY.1943-7900.0001432
    Publisher: American Society of Civil Engineers
    Abstract: Characteristic solution methods, namely the method of characteristics (MOC) and wave characteristics method (WCM), are widely used for simulating transient pipe network flows. Because the MOC computes solutions at interior nodes, it features higher spatial resolution, whereas the WCM makes simplifications that yield more efficient computations. Practical analyses require numerical methods that are both accurate and computationally efficient. To benefit from the advantages of the two approaches, a generalized characteristic method (GCM) is developed in this paper by combining a flexible friction approximation with a variable reach scheme. Significantly, computational savings are realized by selectively providing greater accuracy and higher resolution solutions only where needed via more interior reaches and higher order solutions; further, the new method reduces to either of the MOC and WCM, thereby showing their intrinsic similarities. Multiple examples compare and contrast the numerical methods. From these, unsteady friction effects and, more importantly, spatial resolution are shown to be directly affected by the interior reach treatment, thus exposing a limitation for solution methods with too few interior reaches. Overall, the key contribution of this work is a methodology featuring a similar degree of accuracy to the MOC, but with a computational cost better than that of the WCM.
    • Download: (2.824Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generalized Flexible Method for Simulating Transient Pipe Network Hydraulics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250793
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorNault J. D.;Karney B. W.;Jung B.-S.
    date accessioned2019-02-26T08:00:07Z
    date available2019-02-26T08:00:07Z
    date issued2018
    identifier other%28ASCE%29HY.1943-7900.0001432.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250793
    description abstractCharacteristic solution methods, namely the method of characteristics (MOC) and wave characteristics method (WCM), are widely used for simulating transient pipe network flows. Because the MOC computes solutions at interior nodes, it features higher spatial resolution, whereas the WCM makes simplifications that yield more efficient computations. Practical analyses require numerical methods that are both accurate and computationally efficient. To benefit from the advantages of the two approaches, a generalized characteristic method (GCM) is developed in this paper by combining a flexible friction approximation with a variable reach scheme. Significantly, computational savings are realized by selectively providing greater accuracy and higher resolution solutions only where needed via more interior reaches and higher order solutions; further, the new method reduces to either of the MOC and WCM, thereby showing their intrinsic similarities. Multiple examples compare and contrast the numerical methods. From these, unsteady friction effects and, more importantly, spatial resolution are shown to be directly affected by the interior reach treatment, thus exposing a limitation for solution methods with too few interior reaches. Overall, the key contribution of this work is a methodology featuring a similar degree of accuracy to the MOC, but with a computational cost better than that of the WCM.
    publisherAmerican Society of Civil Engineers
    titleGeneralized Flexible Method for Simulating Transient Pipe Network Hydraulics
    typeJournal Paper
    journal volume144
    journal issue7
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001432
    page4018031
    treeJournal of Hydraulic Engineering:;2018:;Volume ( 144 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian