YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data Assimilation in Hydrologic Routing: Impact of Model Error and Sensor Placement on Flood Forecasting

    Source: Journal of Hydrologic Engineering:;2018:;Volume ( 023 ):;issue: 006
    Author:
    Mazzoleni Maurizio;Chacon-Hurtado Juan;Noh Seong Jin;Seo Dong-Jun;Alfonso Leonardo;Solomatine Dimitri
    DOI: 10.1061/(ASCE)HE.1943-5584.0001656
    Publisher: American Society of Civil Engineers
    Abstract: Diverse hydrologic and hydraulic models of varying complexities have been proposed in the past few decades to accurately predict the water levels and discharges along rivers. Among them, the hydrologic routing models are widely used because of their simplicity, minimal data, and computational requirements. Due to their simplified assumptions, however, they are subject to various sources of uncertainty. To reduce their predictive uncertainty and improve their operational forecast abilities, data assimilation techniques have been proposed to update the states and/or parameters of the mathematic models by integrating real-time river observations with them. However, the characterization of the model errors and the location of the sensors used for data assimilation have an important effect on the model performance. The main objective of this study was to assess the effect of sensor placement and the errors of both the model and the boundary conditions on the assimilation of flow observations in the distributed hydrologic routing models. A Muskingum-Cunge routing model was applied first to a synthetic river reach with a rectangular cross section and then to a more complex natural river, the Bacchiglione River in Italy, with varying geometry of the river cross sections. The Kalman filter was used to assimilate the flow observations. Synthetic and real-world experiments were carried out. The results showed an improved model performance after the assimilation of the flow observations (e.g., a Nash index higher than .9 in the synthetic river and .85 in the Bacchiglione River); however, the procedure was sensitive to the model error and the locations of the sensors. In particular, when the model error was larger than the boundary condition error, it was suggested to place the sensors in the lower part of the river reach to maximize the model improvement at the river outlet. On average, the model performance was improved by 14% in terms of the Nash index when the sensor was located in the upstream part of the reaches of the Bacchiglione River instead of in the downstream part. Sensors placed in the upper part of the reaches enabled the improved skills to persist for additional lead time of up to 6 h for the forecasting of the water level at the reach outlet. This study presented a method that allowed identifying the optimal locations of the sensors and thus helped to improve the flood forecasts.
    • Download: (2.505Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data Assimilation in Hydrologic Routing: Impact of Model Error and Sensor Placement on Flood Forecasting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250770
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMazzoleni Maurizio;Chacon-Hurtado Juan;Noh Seong Jin;Seo Dong-Jun;Alfonso Leonardo;Solomatine Dimitri
    date accessioned2019-02-26T07:59:55Z
    date available2019-02-26T07:59:55Z
    date issued2018
    identifier other%28ASCE%29HE.1943-5584.0001656.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250770
    description abstractDiverse hydrologic and hydraulic models of varying complexities have been proposed in the past few decades to accurately predict the water levels and discharges along rivers. Among them, the hydrologic routing models are widely used because of their simplicity, minimal data, and computational requirements. Due to their simplified assumptions, however, they are subject to various sources of uncertainty. To reduce their predictive uncertainty and improve their operational forecast abilities, data assimilation techniques have been proposed to update the states and/or parameters of the mathematic models by integrating real-time river observations with them. However, the characterization of the model errors and the location of the sensors used for data assimilation have an important effect on the model performance. The main objective of this study was to assess the effect of sensor placement and the errors of both the model and the boundary conditions on the assimilation of flow observations in the distributed hydrologic routing models. A Muskingum-Cunge routing model was applied first to a synthetic river reach with a rectangular cross section and then to a more complex natural river, the Bacchiglione River in Italy, with varying geometry of the river cross sections. The Kalman filter was used to assimilate the flow observations. Synthetic and real-world experiments were carried out. The results showed an improved model performance after the assimilation of the flow observations (e.g., a Nash index higher than .9 in the synthetic river and .85 in the Bacchiglione River); however, the procedure was sensitive to the model error and the locations of the sensors. In particular, when the model error was larger than the boundary condition error, it was suggested to place the sensors in the lower part of the river reach to maximize the model improvement at the river outlet. On average, the model performance was improved by 14% in terms of the Nash index when the sensor was located in the upstream part of the reaches of the Bacchiglione River instead of in the downstream part. Sensors placed in the upper part of the reaches enabled the improved skills to persist for additional lead time of up to 6 h for the forecasting of the water level at the reach outlet. This study presented a method that allowed identifying the optimal locations of the sensors and thus helped to improve the flood forecasts.
    publisherAmerican Society of Civil Engineers
    titleData Assimilation in Hydrologic Routing: Impact of Model Error and Sensor Placement on Flood Forecasting
    typeJournal Paper
    journal volume23
    journal issue6
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001656
    page4018018
    treeJournal of Hydrologic Engineering:;2018:;Volume ( 023 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian