YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Equilibrium Modeling of Snow and Inland Glaciers under the Evolving Climate in Wyoming

    Source: Journal of Hydrologic Engineering:;2018:;Volume ( 023 ):;issue: 001
    Author:
    Johnson Ryan;Ohara Noriaki
    DOI: 10.1061/(ASCE)HE.1943-5584.0001585
    Publisher: American Society of Civil Engineers
    Abstract: Most snow hydrology models do not include the long-term effects of interannual snow storage such as glaciers because glacier dynamics have a longer timescale than river flow and seasonal snowmelt. Interannual snow and ice, including inland glaciers, should be treated as systems in dynamic equilibrium that remain constant under a static climate condition. The model introduced here considers the movement of snow/ice from high-elevation areas to valleys by means of wind redistribution, avalanches, and glaciation. The relocated snow and ice may melt faster because of the higher temperatures of low-elevation areas. The reference temperature increase was modeled as a proportion to the snow and ice mass in a computational cell. The proportional coefficient can describe the equilibrating factor of the glacier system. This study discusses the physically based modeling of such a dynamic equilibrium snow system for long-term snow simulations at a regional scale. The developed regional snow (RegSnow) model was coupled with the weather research and forecasting (WRF) model to compute the snow surface-energy fluxes. According to the model implemented for Wyoming in the United States, approximately 82.2% of interannual snow and ice storage may disappear by the end of this century based on the temperature increase projected by general circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 emission scenario.
    • Download: (2.995Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Equilibrium Modeling of Snow and Inland Glaciers under the Evolving Climate in Wyoming

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250742
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorJohnson Ryan;Ohara Noriaki
    date accessioned2019-02-26T07:59:41Z
    date available2019-02-26T07:59:41Z
    date issued2018
    identifier other%28ASCE%29HE.1943-5584.0001585.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250742
    description abstractMost snow hydrology models do not include the long-term effects of interannual snow storage such as glaciers because glacier dynamics have a longer timescale than river flow and seasonal snowmelt. Interannual snow and ice, including inland glaciers, should be treated as systems in dynamic equilibrium that remain constant under a static climate condition. The model introduced here considers the movement of snow/ice from high-elevation areas to valleys by means of wind redistribution, avalanches, and glaciation. The relocated snow and ice may melt faster because of the higher temperatures of low-elevation areas. The reference temperature increase was modeled as a proportion to the snow and ice mass in a computational cell. The proportional coefficient can describe the equilibrating factor of the glacier system. This study discusses the physically based modeling of such a dynamic equilibrium snow system for long-term snow simulations at a regional scale. The developed regional snow (RegSnow) model was coupled with the weather research and forecasting (WRF) model to compute the snow surface-energy fluxes. According to the model implemented for Wyoming in the United States, approximately 82.2% of interannual snow and ice storage may disappear by the end of this century based on the temperature increase projected by general circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 emission scenario.
    publisherAmerican Society of Civil Engineers
    titleDynamic Equilibrium Modeling of Snow and Inland Glaciers under the Evolving Climate in Wyoming
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001585
    page4017056
    treeJournal of Hydrologic Engineering:;2018:;Volume ( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian