YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fractal Dimensions of Granular Materials Based on Grading Curves

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 006
    Author:
    Bi Jinfeng;Luo Xianqi;Shen Hui;Zhang Haitao
    DOI: 10.1061/(ASCE)MT.1943-5533.0002255
    Publisher: American Society of Civil Engineers
    Abstract: A grading curve is an important measure for illustrating the grain size distribution of granular materials. In general, there exists a statistical fractal relationship between the cumulative number of particles and the grain size for granular materials in nature. The objective of this paper is to calculate fractal dimensions for different types of grading curves of granular materials. The common grading curves are classified into four categories: concave, convex, combinational, and gapped. The formulas of the concave and convex grading curves are derived from the same statistical fractal relation. The fractal dimensions can then be obtained from the known grading curves by a linear fitting approach. For combinational and gapped grading curves, two different fractal dimensions are used to describe the fine and coarse grain parts. In addition, a criterion to determine the optimal demarcation point of a combinational grading curve is suggested. All types of grading curves of common granular materials in civil engineering are considered in this study. Their statistical fractal dimension can be used to study the physical and mechanical properties of materials containing granular ingredients to facilitate the consideration of the complexity of grain distribution.
    • Download: (629.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fractal Dimensions of Granular Materials Based on Grading Curves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250641
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorBi Jinfeng;Luo Xianqi;Shen Hui;Zhang Haitao
    date accessioned2019-02-26T07:58:43Z
    date available2019-02-26T07:58:43Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002255.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250641
    description abstractA grading curve is an important measure for illustrating the grain size distribution of granular materials. In general, there exists a statistical fractal relationship between the cumulative number of particles and the grain size for granular materials in nature. The objective of this paper is to calculate fractal dimensions for different types of grading curves of granular materials. The common grading curves are classified into four categories: concave, convex, combinational, and gapped. The formulas of the concave and convex grading curves are derived from the same statistical fractal relation. The fractal dimensions can then be obtained from the known grading curves by a linear fitting approach. For combinational and gapped grading curves, two different fractal dimensions are used to describe the fine and coarse grain parts. In addition, a criterion to determine the optimal demarcation point of a combinational grading curve is suggested. All types of grading curves of common granular materials in civil engineering are considered in this study. Their statistical fractal dimension can be used to study the physical and mechanical properties of materials containing granular ingredients to facilitate the consideration of the complexity of grain distribution.
    publisherAmerican Society of Civil Engineers
    titleFractal Dimensions of Granular Materials Based on Grading Curves
    typeJournal Paper
    journal volume30
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002255
    page4018083
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian