YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Response of Neighboring Buildings Sitting on Pile Foundations to Seismic Pounding

    Source: International Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 004
    Author:
    Fatahi Behzad;Van Nguyen Quoc;Xu Ruoshi;Sun Wen-jing
    DOI: 10.1061/(ASCE)GM.1943-5622.0001093
    Publisher: American Society of Civil Engineers
    Abstract: Seismic pounding occurs when the separation gap between buildings and structures is not wide enough, particularly during major earthquake events; this can cause them to collide, causing local damage or, in extreme cases, collapse. This study investigated the impact that this separation gap has on the seismic response of midrise buildings supported on piles while considering seismic soil–pile–structure interaction (SSPSI). To achieve this aim, three 15-story reinforced concrete buildings sitting on pile foundations and with five different separation gaps under excitations from the 1994 Northridge and 1995 Kobe earthquakes were numerically simulated. This study used three-dimensional numerical modeling to simultaneously capture the effects of seismic pounding and SSPSI. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modeling can provide a more realistic simulation to capture the seismic behavior of the system. The nonlinear behavior of structural elements was included, and the dynamic soil properties were obtained from field data and backbone curves. A contact pair interface with small-sliding surface-to-surface formulation between buildings was used to capture possible seismic pounding, and contact interfaces with a finite-sliding formulation were used to simulate the interaction between the piles and the soil. The results, including lateral building deflections, interstory drifts, structural shear forces, foundation rocking, lateral pile deflections, and the distributions of bending moments and shear forces of the piles, are presented and discussed. The findings of this study will give engineers a better insight into the possible effects of seismic pounding on the seismic performance of buildings, and the response of end-bearing piles in soft soils.
    • Download: (4.971Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Response of Neighboring Buildings Sitting on Pile Foundations to Seismic Pounding

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250620
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorFatahi Behzad;Van Nguyen Quoc;Xu Ruoshi;Sun Wen-jing
    date accessioned2019-02-26T07:58:27Z
    date available2019-02-26T07:58:27Z
    date issued2018
    identifier other%28ASCE%29GM.1943-5622.0001093.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250620
    description abstractSeismic pounding occurs when the separation gap between buildings and structures is not wide enough, particularly during major earthquake events; this can cause them to collide, causing local damage or, in extreme cases, collapse. This study investigated the impact that this separation gap has on the seismic response of midrise buildings supported on piles while considering seismic soil–pile–structure interaction (SSPSI). To achieve this aim, three 15-story reinforced concrete buildings sitting on pile foundations and with five different separation gaps under excitations from the 1994 Northridge and 1995 Kobe earthquakes were numerically simulated. This study used three-dimensional numerical modeling to simultaneously capture the effects of seismic pounding and SSPSI. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modeling can provide a more realistic simulation to capture the seismic behavior of the system. The nonlinear behavior of structural elements was included, and the dynamic soil properties were obtained from field data and backbone curves. A contact pair interface with small-sliding surface-to-surface formulation between buildings was used to capture possible seismic pounding, and contact interfaces with a finite-sliding formulation were used to simulate the interaction between the piles and the soil. The results, including lateral building deflections, interstory drifts, structural shear forces, foundation rocking, lateral pile deflections, and the distributions of bending moments and shear forces of the piles, are presented and discussed. The findings of this study will give engineers a better insight into the possible effects of seismic pounding on the seismic performance of buildings, and the response of end-bearing piles in soft soils.
    publisherAmerican Society of Civil Engineers
    titleThree-Dimensional Response of Neighboring Buildings Sitting on Pile Foundations to Seismic Pounding
    typeJournal Paper
    journal volume18
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001093
    page4018007
    treeInternational Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian