YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Journal of Energy Engineering:;2018:;Volume ( 144 ):;issue: 002
    Author:
    Wang Xiao;Gao Wenzhong;Gao Tianqi;Li Qiao;Wang Jianhui;Li Xiangjun
    DOI: 10.1061/(ASCE)EY.1943-7897.0000520
    Publisher: American Society of Civil Engineers
    Abstract: As the wind turbine structure flexibility is increased with its larger power capacity, the control system plays a more important role in the effective wind energy generation. This paper presents a robust model reference adaptive control (RMRAC) scheme for turbine speed regulation in the high wind speed region. The existing model reference control (MRC) is designed with respect to the linearized turbine dynamics at the selected operating point, and the adaptive law is introduced that is capable of adjusting the MRC parameters continuously to handle the varying system dynamics. In addition to model reference adaptive control (MRAC), disturbance accommodating control (DAC) is introduced to explicitly cancel out wind disturbances. The authors employ a robust modification mechanism, dead zone with dynamic normalization, to further improve the stability and robustness of the RMRAC. The proposed RMRAC scheme is verified using the high-fidelity turbine simulator FAST, which models an actual utility-scale wind turbine, CART3, located at the National Wind Technology Center (NWTC) in the United States. The proposed scheme is fully evaluated and compared to the baseline linear controls under various wind conditions generated by TurbSim. Under RMRAC, simulation results indicate more accurate generator speed and rotor power regulation performance, as well as enhanced robustness of the closed-loop system.
    • Download: (3.261Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250556
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorWang Xiao;Gao Wenzhong;Gao Tianqi;Li Qiao;Wang Jianhui;Li Xiangjun
    date accessioned2019-02-26T07:57:44Z
    date available2019-02-26T07:57:44Z
    date issued2018
    identifier other%28ASCE%29EY.1943-7897.0000520.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250556
    description abstractAs the wind turbine structure flexibility is increased with its larger power capacity, the control system plays a more important role in the effective wind energy generation. This paper presents a robust model reference adaptive control (RMRAC) scheme for turbine speed regulation in the high wind speed region. The existing model reference control (MRC) is designed with respect to the linearized turbine dynamics at the selected operating point, and the adaptive law is introduced that is capable of adjusting the MRC parameters continuously to handle the varying system dynamics. In addition to model reference adaptive control (MRAC), disturbance accommodating control (DAC) is introduced to explicitly cancel out wind disturbances. The authors employ a robust modification mechanism, dead zone with dynamic normalization, to further improve the stability and robustness of the RMRAC. The proposed RMRAC scheme is verified using the high-fidelity turbine simulator FAST, which models an actual utility-scale wind turbine, CART3, located at the National Wind Technology Center (NWTC) in the United States. The proposed scheme is fully evaluated and compared to the baseline linear controls under various wind conditions generated by TurbSim. Under RMRAC, simulation results indicate more accurate generator speed and rotor power regulation performance, as well as enhanced robustness of the closed-loop system.
    publisherAmerican Society of Civil Engineers
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000520
    page4018007
    treeJournal of Energy Engineering:;2018:;Volume ( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian