YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Time and Frequency Domain Viscoelastic Behavior of Architectured Foams

    Source: Journal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 006
    Author:
    Khan Kamran A.;Abu Al-Rub Rashid K.
    DOI: 10.1061/(ASCE)EM.1943-7889.0001448
    Publisher: American Society of Civil Engineers
    Abstract: The time-dependent behavior of architected lightweight cellular solids or foams is important to investigate for various structural applications. In this paper, the authors studied the linear viscoelastic properties of a novel architectured foam based on the mathematically known Schwarz primitive (P) triply periodic minimal surface (TPMS), referred to here as P-foam, in both time and frequency domains. Here, three dimensional (3D) representative volume elements (RVEs) at different relative densities (i.e., the ratio of the foam’s density to the density of its solid counterpart) were generated and studied using the finite-element method. The effective time-dependent response of P-foams as a function of relative density and frequencies is investigated. For the first time, an approach similar to the time-temperature superposition principle (TTSP) was adopted to create the master curve of the observed relative density–dependent mechanical responses in both time and frequency domains. Reduced uniaxial, bulk, and shear stiffness-loss map results suggested that the P-foam possesses the highest bulk response whereas the highest damping can be achieved under uniaxial responses. Depending on the applications and loading conditions, variable-stiffness P-foam dampers can be designed with unique and optimized dynamic mechanical properties. Comparison of the relaxation responses of various generic cellular architectures with P-foam showed that the uniaxial response of P-foam is similar to that of Kelvin foam. However, shear relaxation and bulk responses are higher than simple cubic, body centered cubic, reinforced body centered cubic, and Gibson-Ashby foams. Based on RVE micromechanical simulations, a macroscopic constitutive model is proposed for modeling the viscoelastic behavior of structural systems made of the P-foam.
    • Download: (2.746Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Time and Frequency Domain Viscoelastic Behavior of Architectured Foams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250531
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorKhan Kamran A.;Abu Al-Rub Rashid K.
    date accessioned2019-02-26T07:57:32Z
    date available2019-02-26T07:57:32Z
    date issued2018
    identifier other%28ASCE%29EM.1943-7889.0001448.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250531
    description abstractThe time-dependent behavior of architected lightweight cellular solids or foams is important to investigate for various structural applications. In this paper, the authors studied the linear viscoelastic properties of a novel architectured foam based on the mathematically known Schwarz primitive (P) triply periodic minimal surface (TPMS), referred to here as P-foam, in both time and frequency domains. Here, three dimensional (3D) representative volume elements (RVEs) at different relative densities (i.e., the ratio of the foam’s density to the density of its solid counterpart) were generated and studied using the finite-element method. The effective time-dependent response of P-foams as a function of relative density and frequencies is investigated. For the first time, an approach similar to the time-temperature superposition principle (TTSP) was adopted to create the master curve of the observed relative density–dependent mechanical responses in both time and frequency domains. Reduced uniaxial, bulk, and shear stiffness-loss map results suggested that the P-foam possesses the highest bulk response whereas the highest damping can be achieved under uniaxial responses. Depending on the applications and loading conditions, variable-stiffness P-foam dampers can be designed with unique and optimized dynamic mechanical properties. Comparison of the relaxation responses of various generic cellular architectures with P-foam showed that the uniaxial response of P-foam is similar to that of Kelvin foam. However, shear relaxation and bulk responses are higher than simple cubic, body centered cubic, reinforced body centered cubic, and Gibson-Ashby foams. Based on RVE micromechanical simulations, a macroscopic constitutive model is proposed for modeling the viscoelastic behavior of structural systems made of the P-foam.
    publisherAmerican Society of Civil Engineers
    titleModeling Time and Frequency Domain Viscoelastic Behavior of Architectured Foams
    typeJournal Paper
    journal volume144
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001448
    page4018029
    treeJournal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian