YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture

    Source: Journal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 004
    Author:
    Le Jia-Liang;Xu Zhifeng;Eliáš Jan
    DOI: 10.1061/(ASCE)EM.1943-7889.0001430
    Publisher: American Society of Civil Engineers
    Abstract: Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasi-brittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.
    • Download: (1.004Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250513
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorLe Jia-Liang;Xu Zhifeng;Eliáš Jan
    date accessioned2019-02-26T07:57:22Z
    date available2019-02-26T07:57:22Z
    date issued2018
    identifier other%28ASCE%29EM.1943-7889.0001430.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250513
    description abstractAnchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasi-brittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.
    publisherAmerican Society of Civil Engineers
    titleInternal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture
    typeJournal Paper
    journal volume144
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001430
    page4018017
    treeJournal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian