YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting the Partitioning of Organic Compounds through Polymer Materials: Quantum Mechanical Applications

    Source: Journal of Environmental Engineering:;2018:;Volume ( 144 ):;issue: 004
    Author:
    Zhang Muxue;Howe Kerry J.;Minakata Daisuke
    DOI: 10.1061/(ASCE)EE.1943-7870.0001361
    Publisher: American Society of Civil Engineers
    Abstract: Hazardous organic compounds can permeate gas pipelines and geomembranes made of organic polymer materials in landfills and leak into the surrounding environment, contaminating groundwater. The permeation of organic compounds in various organic polymer materials is explained by the molecular partition and the diffusion of organic compounds into polymer materials. The partition coefficient has two contributions resulting from size-based exclusion and molecular interaction. In this study, the authors use ab initio quantum mechanical calculations to investigate the molecular interaction between organic polymers and various organic compounds and seek the correlation with experimentally obtained partition coefficients reported in the literature. The authors examine 24 organic compounds and 4 polymer materials, including high-density polyethylene (HDPE) and polyvinyl chloride (PVC) geomembranes and casting, polybutylene (PB) pipes, and styrene-butadiene rubber (SBR) gaskets. The authors find a linear correlation between the theoretically calculated aqueous-phase free energies of interaction and experimentally obtained partition coefficients reported in the literature for HDPE, PB, and SBR. The study highlights the usefulness of free energy of interaction to predict the partition coefficients of organic compounds and provides mechanistic insight into the interaction between organic compounds and polymer materials.
    • Download: (651.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting the Partitioning of Organic Compounds through Polymer Materials: Quantum Mechanical Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250447
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorZhang Muxue;Howe Kerry J.;Minakata Daisuke
    date accessioned2019-02-26T07:56:47Z
    date available2019-02-26T07:56:47Z
    date issued2018
    identifier other%28ASCE%29EE.1943-7870.0001361.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250447
    description abstractHazardous organic compounds can permeate gas pipelines and geomembranes made of organic polymer materials in landfills and leak into the surrounding environment, contaminating groundwater. The permeation of organic compounds in various organic polymer materials is explained by the molecular partition and the diffusion of organic compounds into polymer materials. The partition coefficient has two contributions resulting from size-based exclusion and molecular interaction. In this study, the authors use ab initio quantum mechanical calculations to investigate the molecular interaction between organic polymers and various organic compounds and seek the correlation with experimentally obtained partition coefficients reported in the literature. The authors examine 24 organic compounds and 4 polymer materials, including high-density polyethylene (HDPE) and polyvinyl chloride (PVC) geomembranes and casting, polybutylene (PB) pipes, and styrene-butadiene rubber (SBR) gaskets. The authors find a linear correlation between the theoretically calculated aqueous-phase free energies of interaction and experimentally obtained partition coefficients reported in the literature for HDPE, PB, and SBR. The study highlights the usefulness of free energy of interaction to predict the partition coefficients of organic compounds and provides mechanistic insight into the interaction between organic compounds and polymer materials.
    publisherAmerican Society of Civil Engineers
    titlePredicting the Partitioning of Organic Compounds through Polymer Materials: Quantum Mechanical Applications
    typeJournal Paper
    journal volume144
    journal issue4
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001361
    page4018019
    treeJournal of Environmental Engineering:;2018:;Volume ( 144 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian