YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Modeling of Asphaltic Pavements: Comparison with Field Performance and Parametric Analysis of Design Variables

    Source: Journal of Transportation Engineering, Part B: Pavements:;2018:;Volume ( 144 ):;issue: 002
    Author:
    You Taesun;Kim Yong-Rak;Rami Keyvan Zare;Little Dallas N.
    DOI: 10.1061/JPEODX.0000040
    Publisher: American Society of Civil Engineers
    Abstract: This study presents a multiscale model that concurrently links mixture-level component properties to the structural performance of asphaltic pavements. Two scales (the global scale of the pavement and the local scale of mixtures) were two-way linked in the model framework based on a thermomechanical finite-element formulation. Global and local scales were systemically represented in the model by a homogeneous pavement structure and a heterogeneous asphalt concrete mixture, respectively. A four-layer pavement structure on I-8 in Nebraska was used as an example to demonstrate the modeling. A comparison of the rutting field measurements and model predictions shows relatively good agreement. Parametric analysis of the model was then conducted to investigate the effect of the component properties (viscoelastic stiffness and fracture) and mixture microstructures on two primary pavement distresses: rutting and fatigue cracking. Because mixture heterogeneity, elastic-viscoelastic deformation, and fracture damage in mixture microstructures (local scale) are considered in predicting pavement performance with damage (global scale), typical distress types in asphaltic pavements can be directly examined as a function of the core design-related variables, such as mixture component properties, mixture designs, pavement layer configurations, and traffic loading conditions. Furthermore, the model is expected to significantly reduce the experimental costs and time required to design pavement structures because it uses only the properties of mixture components, not the test results of entire mixtures. Although the modeling approach is in an early stage and requires further improvements before practical implementation, its simulation results show that it has great potential for advancing materials selection, mixture design, and mechanistic pavement analysis/design.
    • Download: (1.537Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Modeling of Asphaltic Pavements: Comparison with Field Performance and Parametric Analysis of Design Variables

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250220
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorYou Taesun;Kim Yong-Rak;Rami Keyvan Zare;Little Dallas N.
    date accessioned2019-02-26T07:54:35Z
    date available2019-02-26T07:54:35Z
    date issued2018
    identifier otherJPEODX.0000040.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250220
    description abstractThis study presents a multiscale model that concurrently links mixture-level component properties to the structural performance of asphaltic pavements. Two scales (the global scale of the pavement and the local scale of mixtures) were two-way linked in the model framework based on a thermomechanical finite-element formulation. Global and local scales were systemically represented in the model by a homogeneous pavement structure and a heterogeneous asphalt concrete mixture, respectively. A four-layer pavement structure on I-8 in Nebraska was used as an example to demonstrate the modeling. A comparison of the rutting field measurements and model predictions shows relatively good agreement. Parametric analysis of the model was then conducted to investigate the effect of the component properties (viscoelastic stiffness and fracture) and mixture microstructures on two primary pavement distresses: rutting and fatigue cracking. Because mixture heterogeneity, elastic-viscoelastic deformation, and fracture damage in mixture microstructures (local scale) are considered in predicting pavement performance with damage (global scale), typical distress types in asphaltic pavements can be directly examined as a function of the core design-related variables, such as mixture component properties, mixture designs, pavement layer configurations, and traffic loading conditions. Furthermore, the model is expected to significantly reduce the experimental costs and time required to design pavement structures because it uses only the properties of mixture components, not the test results of entire mixtures. Although the modeling approach is in an early stage and requires further improvements before practical implementation, its simulation results show that it has great potential for advancing materials selection, mixture design, and mechanistic pavement analysis/design.
    publisherAmerican Society of Civil Engineers
    titleMultiscale Modeling of Asphaltic Pavements: Comparison with Field Performance and Parametric Analysis of Design Variables
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000040
    page4018012
    treeJournal of Transportation Engineering, Part B: Pavements:;2018:;Volume ( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian