YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Journal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 006
    Author:
    Li Shuai;Hedayati Dezfuli Farshad;Wang Jing-Quan;Alam M. Shahria
    DOI: 10.1061/(ASCE)BE.1943-5592.0001231
    Publisher: American Society of Civil Engineers
    Abstract: Restrain devices, being of low cost and easy to install, are often used to limit the relative displacements between the decks and columns in a simply supported bridge. Although the current guidelines have provided different restrainer design methods, they do not adequately consider the dynamic interactions between the decks and columns in isolated bridge systems considering the flexibility of isolation systems. Additionally, due to a fiber-reinforced polymer (FRP) with a high tensile strength and shape memory alloy (SMA) with energy dissipation capacity and self-centering property, they are good candidates to be used as seismic restrainers. However, currently there is no appropriate design method for such restrainers in isolated bridges. The objective of this study is to propose a restrainer design procedure for simply supported bridges equipped with elastomeric isolation systems. Three types of restrainers, i.e., steel, SMA, and carbon fiber-reinforced polymer (CFRP) cables, are considered. The design procedure for restrainers is developed based on a linearized 2-degree-of-freedom (DOF) analytical model. A three-span simply supported highway bridge located in Vancouver, British Columbia, Canada, is chosen as a case study. The effectiveness of the proposed method is evaluated. The results show that the restrainers could remain functional and limit the relative displacement within a design value during earthquakes. The effectiveness factor, defined as the ratio of the yielding displacement to the peak restrainer displacement, ranges from 2. to 6.4. The relative displacements of the bridge retrofitted with steel, CFRP, and SMA cables at midspan supports could be decreased by 41.6, 49.2, and 58.1%, respectively, compared with the allowable design displacement. The total length of SMA cable restrainers is the smallest, and they are more efficient in limiting the relative displacement compared with elastic restrain devices.
    • Download: (3.208Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250219
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorLi Shuai;Hedayati Dezfuli Farshad;Wang Jing-Quan;Alam M. Shahria
    date accessioned2019-02-26T07:54:35Z
    date available2019-02-26T07:54:35Z
    date issued2018
    identifier other%28ASCE%29BE.1943-5592.0001231.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250219
    description abstractRestrain devices, being of low cost and easy to install, are often used to limit the relative displacements between the decks and columns in a simply supported bridge. Although the current guidelines have provided different restrainer design methods, they do not adequately consider the dynamic interactions between the decks and columns in isolated bridge systems considering the flexibility of isolation systems. Additionally, due to a fiber-reinforced polymer (FRP) with a high tensile strength and shape memory alloy (SMA) with energy dissipation capacity and self-centering property, they are good candidates to be used as seismic restrainers. However, currently there is no appropriate design method for such restrainers in isolated bridges. The objective of this study is to propose a restrainer design procedure for simply supported bridges equipped with elastomeric isolation systems. Three types of restrainers, i.e., steel, SMA, and carbon fiber-reinforced polymer (CFRP) cables, are considered. The design procedure for restrainers is developed based on a linearized 2-degree-of-freedom (DOF) analytical model. A three-span simply supported highway bridge located in Vancouver, British Columbia, Canada, is chosen as a case study. The effectiveness of the proposed method is evaluated. The results show that the restrainers could remain functional and limit the relative displacement within a design value during earthquakes. The effectiveness factor, defined as the ratio of the yielding displacement to the peak restrainer displacement, ranges from 2. to 6.4. The relative displacements of the bridge retrofitted with steel, CFRP, and SMA cables at midspan supports could be decreased by 41.6, 49.2, and 58.1%, respectively, compared with the allowable design displacement. The total length of SMA cable restrainers is the smallest, and they are more efficient in limiting the relative displacement compared with elastic restrain devices.
    publisherAmerican Society of Civil Engineers
    typeJournal Paper
    journal volume23
    journal issue6
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001231
    page4018032
    treeJournal of Bridge Engineering:;2018:;Volume ( 023 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian