YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Evaluation of the Shear Behavior of Fiber-Reinforced Calcareous Sands

    Source: International Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 012
    Author:
    Wei Houzhen;Zhao Tao;Meng Qingshan;Wang Xinzhi;He Jianqiao
    DOI: 10.1061/(ASCE)GM.1943-5622.0001307
    Publisher: American Society of Civil Engineers
    Abstract: Fiber-reinforced calcareous sands manifest unique properties of increased shear strength and particle breakage. These features are of practical importance for some offshore engineering constructions because the strength improvement and efficient dense compaction of soils are both important. This paper presents experimental evaluations of the characteristics of shear strength and particle breakage of fiber-reinforced calcareous sands by direct shear and ring shear (RS) tests with different vertical loading stress, fiber content, and fiber length. In the tests, the mixture of fiber and sands can make the specimen a spatially interlocked and unitary coherent network with efficient stress transmission. In addition, the overall deformation of the sand specimen would increase with the fiber content due to low stiffness of fiber elements. Thus, in direct shear tests, the secant elastic modulus decreased, while the shear strength increased with the fiber content. The contribution of fiber to the shear strength of the sand specimen came mainly from the friction and tension forces exerted when they were deformed. These two forces could mobilize the additional shear resistance of sands and thus increase the overall shear strength of the sample. In the RS tests, the breakage intensity of calcareous sands increased with the vertical loading stress, fiber content, and fiber length. At low fiber content and length, the interparticle contacts and interlocking effects influenced the shear strength and particle breakage significantly, while at higher fiber content, the role of fiber friction and tension forces became dominant.
    • Download: (3.629Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Evaluation of the Shear Behavior of Fiber-Reinforced Calcareous Sands

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249850
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWei Houzhen;Zhao Tao;Meng Qingshan;Wang Xinzhi;He Jianqiao
    date accessioned2019-02-26T07:51:18Z
    date available2019-02-26T07:51:18Z
    date issued2018
    identifier other%28ASCE%29GM.1943-5622.0001307.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249850
    description abstractFiber-reinforced calcareous sands manifest unique properties of increased shear strength and particle breakage. These features are of practical importance for some offshore engineering constructions because the strength improvement and efficient dense compaction of soils are both important. This paper presents experimental evaluations of the characteristics of shear strength and particle breakage of fiber-reinforced calcareous sands by direct shear and ring shear (RS) tests with different vertical loading stress, fiber content, and fiber length. In the tests, the mixture of fiber and sands can make the specimen a spatially interlocked and unitary coherent network with efficient stress transmission. In addition, the overall deformation of the sand specimen would increase with the fiber content due to low stiffness of fiber elements. Thus, in direct shear tests, the secant elastic modulus decreased, while the shear strength increased with the fiber content. The contribution of fiber to the shear strength of the sand specimen came mainly from the friction and tension forces exerted when they were deformed. These two forces could mobilize the additional shear resistance of sands and thus increase the overall shear strength of the sample. In the RS tests, the breakage intensity of calcareous sands increased with the vertical loading stress, fiber content, and fiber length. At low fiber content and length, the interparticle contacts and interlocking effects influenced the shear strength and particle breakage significantly, while at higher fiber content, the role of fiber friction and tension forces became dominant.
    publisherAmerican Society of Civil Engineers
    titleExperimental Evaluation of the Shear Behavior of Fiber-Reinforced Calcareous Sands
    typeJournal Paper
    journal volume18
    journal issue12
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001307
    page4018175
    treeInternational Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian