YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Case Study of the Integrated Model for Estimation of Sediment Load in Artificial River Channel

    Source: Journal of Hydrologic Engineering:;2018:;Volume ( 023 ):;issue: 005
    Author:
    Zhou Hong;Chang Tiao J.
    DOI: 10.1061/(ASCE)HE.1943-5584.0001642
    Publisher: American Society of Civil Engineers
    Abstract: Sedimentation is one of the most important factors affecting stream channel stability. A proposed model was developed to estimate the sediment load of an artificial channel by the integration of the revised universal soil loss equation (RUSLE) and Watershed Assessment of River Stability and Sediment Supply (WARSSS). The developed model was tested in the channelized portion of the Hocking River near Athens, Ohio. It was estimated that the gross erosion from the watershed was 7.29×11  kg/year, of which 96.64% resulted from surface erosion and 3.36% from bank erosion. A field measurement of total sediment yield in the channel, assumed to be the sum of suspended sediment and bedload, was conducted. The total annual sediment yield was estimated as 8.9×19  kg, of which 98.29% was suspended sediments and 1.71% bedload sediments. It was concluded that the sediment delivery ratio of the studied watershed was estimated to be 11.11%, which is consistent with those of the watersheds having similar sizes in the region. Based on these results, the authors believe that the proposed model can reasonably well estimate the sediment load in the studied portion of the Hocking River.
    • Download: (2.394Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Case Study of the Integrated Model for Estimation of Sediment Load in Artificial River Channel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249761
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorZhou Hong;Chang Tiao J.
    date accessioned2019-02-26T07:50:28Z
    date available2019-02-26T07:50:28Z
    date issued2018
    identifier other%28ASCE%29HE.1943-5584.0001642.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249761
    description abstractSedimentation is one of the most important factors affecting stream channel stability. A proposed model was developed to estimate the sediment load of an artificial channel by the integration of the revised universal soil loss equation (RUSLE) and Watershed Assessment of River Stability and Sediment Supply (WARSSS). The developed model was tested in the channelized portion of the Hocking River near Athens, Ohio. It was estimated that the gross erosion from the watershed was 7.29×11  kg/year, of which 96.64% resulted from surface erosion and 3.36% from bank erosion. A field measurement of total sediment yield in the channel, assumed to be the sum of suspended sediment and bedload, was conducted. The total annual sediment yield was estimated as 8.9×19  kg, of which 98.29% was suspended sediments and 1.71% bedload sediments. It was concluded that the sediment delivery ratio of the studied watershed was estimated to be 11.11%, which is consistent with those of the watersheds having similar sizes in the region. Based on these results, the authors believe that the proposed model can reasonably well estimate the sediment load in the studied portion of the Hocking River.
    publisherAmerican Society of Civil Engineers
    titleCase Study of the Integrated Model for Estimation of Sediment Load in Artificial River Channel
    typeJournal Paper
    journal volume23
    journal issue5
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001642
    page5018005
    treeJournal of Hydrologic Engineering:;2018:;Volume ( 023 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian