YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Untitled

    Source: Journal of Surveying Engineering:;2018:;Volume ( 144 ):;issue: 002
    Author:
    Wang Kan;Khodabandeh Amir;Teunissen Peter J. G.;Nadarajah Nandakumaran
    DOI: 10.1061/(ASCE)SU.1943-5428.0000252
    Publisher: American Society of Civil Engineers
    Abstract: The real-time kinematic precise point positioning (PPP-RTK) technique enables integer ambiguity resolution by providing single-receiver users with information on the satellite phase biases next to the standard PPP corrections. Using undifferenced and uncombined observations, rank deficiencies existing in the design matrix need to be eliminated to form estimable parameters. In this contribution, the estimability of the parameters was studied in single-frequency ionosphere-weighted scenario, given a dynamic satellite-clock model in the network Kalman filter. In case of latency of the network corrections, the estimable satellite clocks, satellite phase biases, and ionospheric delays need to be predicted over short time spans. With and without satellite-clock models incorporated in the network Kalman filter, different approaches were used to predict the network corrections. This contribution shows how the predicted network corrections responded to the presence and absence of satellite-clock models. These differences in the predicted network corrections were also reflected in the user positioning results. Using three different 1-Hz global positioning system (GPS) single-frequency data sets, two user stations in one small-scale network were used to compute the positioning results, applying predicted network corrections. The latency of the network products ranges from 3 to 1 s. It was observed that applying strong satellite-clock constraints in the network Kalman filter (i.e., with the process noise of 1 or .5 mm per square root of second) reduced the root-mean squares (RMS) of the user positioning results to centimeters in the horizontal directions and decimeters in the vertical direction for latencies larger than 6 s, compared to the cases without a satellite-clock model.
    • Download: (2.669Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249586
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorWang Kan;Khodabandeh Amir;Teunissen Peter J. G.;Nadarajah Nandakumaran
    date accessioned2019-02-26T07:48:55Z
    date available2019-02-26T07:48:55Z
    date issued2018
    identifier other%28ASCE%29SU.1943-5428.0000252.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249586
    description abstractThe real-time kinematic precise point positioning (PPP-RTK) technique enables integer ambiguity resolution by providing single-receiver users with information on the satellite phase biases next to the standard PPP corrections. Using undifferenced and uncombined observations, rank deficiencies existing in the design matrix need to be eliminated to form estimable parameters. In this contribution, the estimability of the parameters was studied in single-frequency ionosphere-weighted scenario, given a dynamic satellite-clock model in the network Kalman filter. In case of latency of the network corrections, the estimable satellite clocks, satellite phase biases, and ionospheric delays need to be predicted over short time spans. With and without satellite-clock models incorporated in the network Kalman filter, different approaches were used to predict the network corrections. This contribution shows how the predicted network corrections responded to the presence and absence of satellite-clock models. These differences in the predicted network corrections were also reflected in the user positioning results. Using three different 1-Hz global positioning system (GPS) single-frequency data sets, two user stations in one small-scale network were used to compute the positioning results, applying predicted network corrections. The latency of the network products ranges from 3 to 1 s. It was observed that applying strong satellite-clock constraints in the network Kalman filter (i.e., with the process noise of 1 or .5 mm per square root of second) reduced the root-mean squares (RMS) of the user positioning results to centimeters in the horizontal directions and decimeters in the vertical direction for latencies larger than 6 s, compared to the cases without a satellite-clock model.
    publisherAmerican Society of Civil Engineers
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000252
    page4018003
    treeJournal of Surveying Engineering:;2018:;Volume ( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian