YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact and Improvement of Crushed Tuff Sand on Sulfate Resistance of Cement Concrete at Low Temperature

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 010
    Author:
    Wen Xiaodong;Zhang Zhenya;Cai Yuliang;Feng Lei;Qiu Tianhao
    DOI: 10.1061/(ASCE)MT.1943-5533.0002457
    Publisher: American Society of Civil Engineers
    Abstract: Experimental tests were conducted to study the thaumasite formation of sulfate attack (TSA) erosion resistance of cement concrete made with crushed tuff sand. Different specimens made with either crushed tuff sand or river sand were soaked in a mixed solution of sodium sulfate and magnesium sulfate at the temperature of 1±1°C to simulate its working environment, and electrical pulses were used to accelerate corrosive medium migration. Afterward, the compressive strength and erosion products of before- and after-corrosion sample specimens were comparatively analyzed. The results showed that the strength of concrete made with crushed tuff sand was higher than that made with river sand before corrosion. However, the difference in their strengths diminished when the specimens were exposed to sulfate and a pulsed electric field for 2 months. This means that the specimens made with crushed tuff sand suffered a greater loss of strength compared with those made with river sand. The amount of thaumasite was higher than that of ettringite in the specimens made with crushed tuff sand; for specimens made with river sand, the situation was just the opposite. The reason that the crushed tuff sand reduced the sulfate erosion resistance ability of concrete at low temperatures is discussed on the basis of the mineral composition of tuff rock powder, the porous structure of concrete, and the interfacial transition zone (ITZ) microstructure of concrete. It was found that incorporating a certain amount of barium hydroxide can improve the anti-sulfate erosion ability, and the best dosage is around 4%.
    • Download: (1.031Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact and Improvement of Crushed Tuff Sand on Sulfate Resistance of Cement Concrete at Low Temperature

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249569
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorWen Xiaodong;Zhang Zhenya;Cai Yuliang;Feng Lei;Qiu Tianhao
    date accessioned2019-02-26T07:48:48Z
    date available2019-02-26T07:48:48Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002457.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249569
    description abstractExperimental tests were conducted to study the thaumasite formation of sulfate attack (TSA) erosion resistance of cement concrete made with crushed tuff sand. Different specimens made with either crushed tuff sand or river sand were soaked in a mixed solution of sodium sulfate and magnesium sulfate at the temperature of 1±1°C to simulate its working environment, and electrical pulses were used to accelerate corrosive medium migration. Afterward, the compressive strength and erosion products of before- and after-corrosion sample specimens were comparatively analyzed. The results showed that the strength of concrete made with crushed tuff sand was higher than that made with river sand before corrosion. However, the difference in their strengths diminished when the specimens were exposed to sulfate and a pulsed electric field for 2 months. This means that the specimens made with crushed tuff sand suffered a greater loss of strength compared with those made with river sand. The amount of thaumasite was higher than that of ettringite in the specimens made with crushed tuff sand; for specimens made with river sand, the situation was just the opposite. The reason that the crushed tuff sand reduced the sulfate erosion resistance ability of concrete at low temperatures is discussed on the basis of the mineral composition of tuff rock powder, the porous structure of concrete, and the interfacial transition zone (ITZ) microstructure of concrete. It was found that incorporating a certain amount of barium hydroxide can improve the anti-sulfate erosion ability, and the best dosage is around 4%.
    publisherAmerican Society of Civil Engineers
    titleImpact and Improvement of Crushed Tuff Sand on Sulfate Resistance of Cement Concrete at Low Temperature
    typeJournal Paper
    journal volume30
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002457
    page5018004
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian