YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of a Biomodifier as Fog Sealants to Delay Ultraviolet Aging of Bituminous Materials

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 012
    Author:
    Zadshir Mehdi;Hosseinnezhad Shahrzad;Ortega Ruben;Chen Fangliang;Hochstein Daniel;Xie Jeff;Yin Huiming;Parast Mahour M.;Fini Ellie H.
    DOI: 10.1061/(ASCE)MT.1943-5533.0002483
    Publisher: American Society of Civil Engineers
    Abstract: This study examines the merits of applying a biomodifier (Bio-binder, Sustainable Infrastructure Material Lab, NC A&T State University, Greensboro, North Carolina) as a fog sealant on the surface of bituminous materials to delay aging specifically caused by ultraviolet (UV) radiation during pavement service life. This study uses four types of bituminous-based materials: an asphalt binder [Performance Grade (PG 64-22) and three types of crack sealants with varying polymer content and different viscosities. Materials were prepared in small samples on aluminum plates and aged under continuous UV and UV/moisture/condensation conditioning. Changes in the chemical characteristics of the materials were then analyzed using Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The results show that the oxygen uptake of bituminous materials after exposure to UV aging are significantly lower in specimens covered with Bio-binder compared with uncoated ones. The complex modulus and creep compliance were measured using a dynamic shear rheometer. The complex modulus for asphalt binder samples showed an increase that could be due to partial diffusion of the biomodifier in the specimens. However, in sealant samples in which the Bio-binder was removed prior to performing the experiments, the shear modulus showed a significant decrease, indicating that the sealants covered with Bio-binder remained softer compared with the uncovered samples. The results also showed a higher nonrecoverable creep compliance and a lower percent recovery at 3.2 kPa strain rate for specimens coated by Bio-binder compared with the samples with no coating, showing that the fog sealant can effectively improve properties of the sealant samples. Overall, the findings demonstrate that Bio-binder can be a promising candidate to be used as a fog sealant for bituminous binder and crack sealants to delay UV aging.
    • Download: (2.588Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of a Biomodifier as Fog Sealants to Delay Ultraviolet Aging of Bituminous Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249565
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZadshir Mehdi;Hosseinnezhad Shahrzad;Ortega Ruben;Chen Fangliang;Hochstein Daniel;Xie Jeff;Yin Huiming;Parast Mahour M.;Fini Ellie H.
    date accessioned2019-02-26T07:48:44Z
    date available2019-02-26T07:48:44Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002483.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249565
    description abstractThis study examines the merits of applying a biomodifier (Bio-binder, Sustainable Infrastructure Material Lab, NC A&T State University, Greensboro, North Carolina) as a fog sealant on the surface of bituminous materials to delay aging specifically caused by ultraviolet (UV) radiation during pavement service life. This study uses four types of bituminous-based materials: an asphalt binder [Performance Grade (PG 64-22) and three types of crack sealants with varying polymer content and different viscosities. Materials were prepared in small samples on aluminum plates and aged under continuous UV and UV/moisture/condensation conditioning. Changes in the chemical characteristics of the materials were then analyzed using Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The results show that the oxygen uptake of bituminous materials after exposure to UV aging are significantly lower in specimens covered with Bio-binder compared with uncoated ones. The complex modulus and creep compliance were measured using a dynamic shear rheometer. The complex modulus for asphalt binder samples showed an increase that could be due to partial diffusion of the biomodifier in the specimens. However, in sealant samples in which the Bio-binder was removed prior to performing the experiments, the shear modulus showed a significant decrease, indicating that the sealants covered with Bio-binder remained softer compared with the uncovered samples. The results also showed a higher nonrecoverable creep compliance and a lower percent recovery at 3.2 kPa strain rate for specimens coated by Bio-binder compared with the samples with no coating, showing that the fog sealant can effectively improve properties of the sealant samples. Overall, the findings demonstrate that Bio-binder can be a promising candidate to be used as a fog sealant for bituminous binder and crack sealants to delay UV aging.
    publisherAmerican Society of Civil Engineers
    titleApplication of a Biomodifier as Fog Sealants to Delay Ultraviolet Aging of Bituminous Materials
    typeJournal Paper
    journal volume30
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002483
    page4018310
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian