YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CSA-Treated Sand for Geotechnical Application: Microstructure Analysis and Rapid Strength Development

    Source: Journal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 012
    Author:
    Subramanian Sathya;Moon Sung-Woo;Moon Juhyuk;Ku Taeseo
    DOI: 10.1061/(ASCE)MT.1943-5533.0002523
    Publisher: American Society of Civil Engineers
    Abstract: This paper studies the effectiveness of calcium sulfoaluminate (CSA), which has a much lower carbon footprint than conventional ordinary portland cement (OPC), in geotechnical applications which use high water:cement ratios. Unconfined compressive strength is used to compare OPC and CSA treated sand. Apart from its ecofriendly characteristics, CSA-treated sand has significantly high initial strength development due to the fast hydration of ye’elimite. Two curing methods are used to simulate wet field and dry field conditions. For both OPC-treated and CSA-treated sand, the samples cured underwater have lower strength than the dry-cured samples. However, the strength reduction due to wet curing is less for CSA than for OPC. In addition, recoverable strength loss is observed in CSA-treated sand subjected to wet curing between 7 and 14 days, which is not observed in dry curing. The effect of water content on the strength of cemented sand is presented. The use of CSA would help move toward a sustainable approach to reduce the carbon footprint in geotechnical applications.
    • Download: (1.266Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CSA-Treated Sand for Geotechnical Application: Microstructure Analysis and Rapid Strength Development

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249549
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSubramanian Sathya;Moon Sung-Woo;Moon Juhyuk;Ku Taeseo
    date accessioned2019-02-26T07:48:37Z
    date available2019-02-26T07:48:37Z
    date issued2018
    identifier other%28ASCE%29MT.1943-5533.0002523.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249549
    description abstractThis paper studies the effectiveness of calcium sulfoaluminate (CSA), which has a much lower carbon footprint than conventional ordinary portland cement (OPC), in geotechnical applications which use high water:cement ratios. Unconfined compressive strength is used to compare OPC and CSA treated sand. Apart from its ecofriendly characteristics, CSA-treated sand has significantly high initial strength development due to the fast hydration of ye’elimite. Two curing methods are used to simulate wet field and dry field conditions. For both OPC-treated and CSA-treated sand, the samples cured underwater have lower strength than the dry-cured samples. However, the strength reduction due to wet curing is less for CSA than for OPC. In addition, recoverable strength loss is observed in CSA-treated sand subjected to wet curing between 7 and 14 days, which is not observed in dry curing. The effect of water content on the strength of cemented sand is presented. The use of CSA would help move toward a sustainable approach to reduce the carbon footprint in geotechnical applications.
    publisherAmerican Society of Civil Engineers
    titleCSA-Treated Sand for Geotechnical Application: Microstructure Analysis and Rapid Strength Development
    typeJournal Paper
    journal volume30
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002523
    page4018313
    treeJournal of Materials in Civil Engineering:;2018:;Volume ( 030 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian