YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Method for Real-Time Hybrid Testing with a Global Iteration Strategy

    Source: Journal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 012
    Author:
    Guo Jin;Zhao Weigang;Du Yanliang;Cao Yuzhou;Wang Guan;Zhang Mengxuan
    DOI: 10.1061/(ASCE)ST.1943-541X.0002207
    Publisher: American Society of Civil Engineers
    Abstract: In current real-time hybrid testing (RTHT), command displacement is applied to the experimental substructure and a restoring force is fed back to the integration algorithm at each time step between the numerical and physical substructures, during which synchronization must be maintained to achieve the real-time effect. These inherent characteristics in RTHT raise its requirements for the numerical integration method and make it sensitive to servohydraulic time delay. This paper proposes a new method of RTHT, GI-RTHT, in which the numerical and experimental substructures are independent without any data exchange during the duration of seismic action. This feature enables GI-RTHT to use existing advanced integration algorithms, many of which have superior stability and accuracy, just like when they are used in pure numerical simulations. Furthermore, the effect of actuator time delay on numerical integration algorithm disappears. To achieve compatibility and equilibrium at the interfaces between the substructures, an iteration is involved within the time scale of the duration of the earthquake, which is similar to the iteration solution algorithm for the equation. The stability of GI-RTHT is analyzed theoretically. The applicability and stability of GI-RTHT are evaluated based on tests on a cable-stayed bridge with 5,9 degrees of freedom and 24 nonlinear links, which is considerably larger and more complex than published models of RTHT. Excellent results are achieved in the testing. Approximate convergent solutions are reached after five iterations. This work presents a novel procedure for RTHT that is particularly suitable for systems with reusable devices/components selected as the experimental substructure.
    • Download: (1.565Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Method for Real-Time Hybrid Testing with a Global Iteration Strategy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249474
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorGuo Jin;Zhao Weigang;Du Yanliang;Cao Yuzhou;Wang Guan;Zhang Mengxuan
    date accessioned2019-02-26T07:47:55Z
    date available2019-02-26T07:47:55Z
    date issued2018
    identifier other%28ASCE%29ST.1943-541X.0002207.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249474
    description abstractIn current real-time hybrid testing (RTHT), command displacement is applied to the experimental substructure and a restoring force is fed back to the integration algorithm at each time step between the numerical and physical substructures, during which synchronization must be maintained to achieve the real-time effect. These inherent characteristics in RTHT raise its requirements for the numerical integration method and make it sensitive to servohydraulic time delay. This paper proposes a new method of RTHT, GI-RTHT, in which the numerical and experimental substructures are independent without any data exchange during the duration of seismic action. This feature enables GI-RTHT to use existing advanced integration algorithms, many of which have superior stability and accuracy, just like when they are used in pure numerical simulations. Furthermore, the effect of actuator time delay on numerical integration algorithm disappears. To achieve compatibility and equilibrium at the interfaces between the substructures, an iteration is involved within the time scale of the duration of the earthquake, which is similar to the iteration solution algorithm for the equation. The stability of GI-RTHT is analyzed theoretically. The applicability and stability of GI-RTHT are evaluated based on tests on a cable-stayed bridge with 5,9 degrees of freedom and 24 nonlinear links, which is considerably larger and more complex than published models of RTHT. Excellent results are achieved in the testing. Approximate convergent solutions are reached after five iterations. This work presents a novel procedure for RTHT that is particularly suitable for systems with reusable devices/components selected as the experimental substructure.
    publisherAmerican Society of Civil Engineers
    titleNew Method for Real-Time Hybrid Testing with a Global Iteration Strategy
    typeJournal Paper
    journal volume144
    journal issue12
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002207
    page4018218
    treeJournal of Structural Engineering:;2018:;Volume ( 144 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian