YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study on the Seasonal Estuarine Turbidity Maximum Variations of the Yangtze Estuary, China

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2018:;Volume ( 144 ):;issue: 003
    Author:
    Wan Yuanyang;Wang Li
    DOI: 10.1061/(ASCE)WW.1943-5460.0000442
    Publisher: American Society of Civil Engineers
    Abstract: In this study, measurements were used to characterize the dry–wet seasonal factors that control hydrodynamics and sediment transport in the Deepwater Navigational Channel (DNC) located in the North Passage of the Yangtze Estuary. The measured data showed the following: (1) The estuarine turbidity maximum (ETM) location remained in the middle and lower reaches of the DNC, regardless of season or tide, and (2) density stratification and saltwater-intrusion length were found to significantly impact seasonal differences in the estuarine turbidity maximum. Subsequently, a physical-based three-dimensional numerical model was developed to simulate seasonal variations in fine-grained suspended sediment dynamics in the Yangtze Estuary. A series of numerical experiments focused on river discharge, seasonal wind, and mean sea level was performed to explore the primary mechanisms. Finally, the complexity of water circulation and sediment dynamics related to the seasonal variability of channel siltation in the channel was determined. The modeling results showed that (1) river discharge has a strong impact on the horizontal and vertical distribution of residual currents, especially near the bottom during the wet season; (2) seasonally varying wind can significantly alter residual currents near the riverine limit, and the wind in the dry season favors the delivery of sediments from river to sea; and (3) seasonally varying mean sea level and wind climate jointly shape the saltwater-intrusion length near the estuarine front. This study represents a preliminary exploration of physical phenomena and their contribution to siltation of the Yangtze Estuary navigation channel. The results of this study provide crucial data for the development of measures to mitigate channel siltation.
    • Download: (7.222Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study on the Seasonal Estuarine Turbidity Maximum Variations of the Yangtze Estuary, China

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249360
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorWan Yuanyang;Wang Li
    date accessioned2019-02-26T07:47:06Z
    date available2019-02-26T07:47:06Z
    date issued2018
    identifier other%28ASCE%29WW.1943-5460.0000442.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249360
    description abstractIn this study, measurements were used to characterize the dry–wet seasonal factors that control hydrodynamics and sediment transport in the Deepwater Navigational Channel (DNC) located in the North Passage of the Yangtze Estuary. The measured data showed the following: (1) The estuarine turbidity maximum (ETM) location remained in the middle and lower reaches of the DNC, regardless of season or tide, and (2) density stratification and saltwater-intrusion length were found to significantly impact seasonal differences in the estuarine turbidity maximum. Subsequently, a physical-based three-dimensional numerical model was developed to simulate seasonal variations in fine-grained suspended sediment dynamics in the Yangtze Estuary. A series of numerical experiments focused on river discharge, seasonal wind, and mean sea level was performed to explore the primary mechanisms. Finally, the complexity of water circulation and sediment dynamics related to the seasonal variability of channel siltation in the channel was determined. The modeling results showed that (1) river discharge has a strong impact on the horizontal and vertical distribution of residual currents, especially near the bottom during the wet season; (2) seasonally varying wind can significantly alter residual currents near the riverine limit, and the wind in the dry season favors the delivery of sediments from river to sea; and (3) seasonally varying mean sea level and wind climate jointly shape the saltwater-intrusion length near the estuarine front. This study represents a preliminary exploration of physical phenomena and their contribution to siltation of the Yangtze Estuary navigation channel. The results of this study provide crucial data for the development of measures to mitigate channel siltation.
    publisherAmerican Society of Civil Engineers
    titleStudy on the Seasonal Estuarine Turbidity Maximum Variations of the Yangtze Estuary, China
    typeJournal Paper
    journal volume144
    journal issue3
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000442
    page5018002
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2018:;Volume ( 144 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian