YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Highway and Transportation Research and Development (English Edition)
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Highway and Transportation Research and Development (English Edition)
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Life Analysis of Composite Pavement with Multiple Overlays

    Source: Journal of Highway and Transportation Research and Development (English Edition):;2018:;Volume ( 012 ):;issue: 003
    Author:
    Li Long-hai;Yang Ru
    DOI: 10.1061/JHTRCQ.0000634
    Publisher: American Society of Civil Engineers
    Abstract: Two 3D finite element models are established to analyze the mechanical response of road construction and solve the problem in which the actual fatigue life of the overlay is significantly shorter than the designed value. The first model is composite pavement with multiple overlays, whereas the second model is pavement overlaid with the same thickness of asphalt concrete. Calculation results indicate that interlaminar bonding condition significantly affects shear stress and tensile strain, and the value calculated by the second model is smaller than that calculated by the first model, which may lead to unsafe design. The following conclusions can be drawn based on the tendency of interlayer shear to form along the direction of road depth. (1) The interlaminar shear of old pavement decreases when overlaid with asphalt concrete, whereas maximum shear stress always occurs at the bottom of the surface layer. (2) When pavement overlay frequency is increased, the interlaminar shear value of the surface layer will be increased. The value of interlayer shear stress mutation increases with the frequency of overlay. The simulation results show that the service life of asphalt overlay decreases with the frequency of overlay, which indicates that overlaying asphalt cannot improve the stress state of the surface layer. By contrast, the comprehensive influences of interlaminar bonding condition and composite load will increase surface stress, which may eventually intensify surface damage.
    • Download: (1002.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Life Analysis of Composite Pavement with Multiple Overlays

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4249324
    Collections
    • Journal of Highway and Transportation Research and Development (English Edition)

    Show full item record

    contributor authorLi Long-hai;Yang Ru
    date accessioned2019-02-26T07:46:52Z
    date available2019-02-26T07:46:52Z
    date issued2018
    identifier otherJHTRCQ.0000634.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4249324
    description abstractTwo 3D finite element models are established to analyze the mechanical response of road construction and solve the problem in which the actual fatigue life of the overlay is significantly shorter than the designed value. The first model is composite pavement with multiple overlays, whereas the second model is pavement overlaid with the same thickness of asphalt concrete. Calculation results indicate that interlaminar bonding condition significantly affects shear stress and tensile strain, and the value calculated by the second model is smaller than that calculated by the first model, which may lead to unsafe design. The following conclusions can be drawn based on the tendency of interlayer shear to form along the direction of road depth. (1) The interlaminar shear of old pavement decreases when overlaid with asphalt concrete, whereas maximum shear stress always occurs at the bottom of the surface layer. (2) When pavement overlay frequency is increased, the interlaminar shear value of the surface layer will be increased. The value of interlayer shear stress mutation increases with the frequency of overlay. The simulation results show that the service life of asphalt overlay decreases with the frequency of overlay, which indicates that overlaying asphalt cannot improve the stress state of the surface layer. By contrast, the comprehensive influences of interlaminar bonding condition and composite load will increase surface stress, which may eventually intensify surface damage.
    publisherAmerican Society of Civil Engineers
    titleFatigue Life Analysis of Composite Pavement with Multiple Overlays
    typeJournal Paper
    journal volume12
    journal issue3
    journal titleJournal of Highway and Transportation Research and Development (English Edition)
    identifier doi10.1061/JHTRCQ.0000634
    page7
    treeJournal of Highway and Transportation Research and Development (English Edition):;2018:;Volume ( 012 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian