YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear-Induced Failure and Static Liquefaction in Reinforced Soil and Triaxial Tests

    Source: International Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 011
    Author:
    Hoffman Peter
    DOI: 10.1061/(ASCE)GM.1943-5622.0001276
    Publisher: American Society of Civil Engineers
    Abstract: In the Federal Highway Administration (FHWA) laboratory, a phenomenon was identified that reduces soil bearing capacity. This phenomenon arises in common situations, for example, reinforced soil, triaxial tests, mat foundations on sand over bedrock, and other stratified media. In reinforced soil, this reduction is based on reinforcement spacing S and soil particle diameter D. This study provided a generic derivation showing that Coulomb’s failure criterion is triggered by shear stress associated with not only S and D, but also the other dimensions of a soil structure. Although identified and validated in experiments, the S:D instability was verified by finite-element analysis when the number of elements equals the number of soil particles. Static liquefaction was identified with instability and collapse of force chains. Although analysis was performed in the idealized context of unfaced soil structures, FHWA test data demonstrated violent effects on faced structures when the S:D stability limit was exceeded. For narrow structures, this study also evaluated the S:B instability, where B is the breadth of the reinforcement, triaxial test specimen, or foundation mat.
    • Download: (1.784Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear-Induced Failure and Static Liquefaction in Reinforced Soil and Triaxial Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248949
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHoffman Peter
    date accessioned2019-02-26T07:43:33Z
    date available2019-02-26T07:43:33Z
    date issued2018
    identifier other%28ASCE%29GM.1943-5622.0001276.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248949
    description abstractIn the Federal Highway Administration (FHWA) laboratory, a phenomenon was identified that reduces soil bearing capacity. This phenomenon arises in common situations, for example, reinforced soil, triaxial tests, mat foundations on sand over bedrock, and other stratified media. In reinforced soil, this reduction is based on reinforcement spacing S and soil particle diameter D. This study provided a generic derivation showing that Coulomb’s failure criterion is triggered by shear stress associated with not only S and D, but also the other dimensions of a soil structure. Although identified and validated in experiments, the S:D instability was verified by finite-element analysis when the number of elements equals the number of soil particles. Static liquefaction was identified with instability and collapse of force chains. Although analysis was performed in the idealized context of unfaced soil structures, FHWA test data demonstrated violent effects on faced structures when the S:D stability limit was exceeded. For narrow structures, this study also evaluated the S:B instability, where B is the breadth of the reinforcement, triaxial test specimen, or foundation mat.
    publisherAmerican Society of Civil Engineers
    titleShear-Induced Failure and Static Liquefaction in Reinforced Soil and Triaxial Tests
    typeJournal Paper
    journal volume18
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001276
    page4018147
    treeInternational Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian