YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying Microstructural Damage of Sandstone after Hydrochemical Corrosion

    Source: International Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 010
    Author:
    Han Tielin;Shi Junping;Chen Yunsheng;Cao Xiaoshan
    DOI: 10.1061/(ASCE)GM.1943-5622.0001237
    Publisher: American Society of Civil Engineers
    Abstract: Rock microstructure changes after hydrochemical reactions, which, in turn, leads to deterioration of mechanical properties. Thus, a quantification study on rock microstructural damage after chemical corrosion is necessary. Quantification of the microstructural damage of rocks after chemical corrosion was carried out in this study. We presented a proposal that included formulae for calculating the damage variable by analyzing the porosity changes of sandstone. The plastic deformation of sandstone specimens after soaking in chemical solution was observed. Plastic deformation can be divided into distinct stages over time. Results showed that the prepeak incremental deformation after chemical corrosion was partially due to the increase in plastic deformation before reaching the peak and to the deformation caused by pore compression. Plastic deformation is an indirect indicator of the degree of chemical corrosion of sandstone specimens. After chemical corrosion, the porosity of sandstone specimens changed consistently with the velocity of longitudinal wave. Therefore, the calculation formula of the damage variable can be used to calculate the porosity of sandstone specimens at different time periods. The chemical damage of sandstone specimens was highly consistent with the peak strain. Therefore, the damage variable based on porosity can be used to quantitatively describe the damage caused by chemical corrosion.
    • Download: (3.730Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying Microstructural Damage of Sandstone after Hydrochemical Corrosion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248919
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHan Tielin;Shi Junping;Chen Yunsheng;Cao Xiaoshan
    date accessioned2019-02-26T07:43:15Z
    date available2019-02-26T07:43:15Z
    date issued2018
    identifier other%28ASCE%29GM.1943-5622.0001237.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248919
    description abstractRock microstructure changes after hydrochemical reactions, which, in turn, leads to deterioration of mechanical properties. Thus, a quantification study on rock microstructural damage after chemical corrosion is necessary. Quantification of the microstructural damage of rocks after chemical corrosion was carried out in this study. We presented a proposal that included formulae for calculating the damage variable by analyzing the porosity changes of sandstone. The plastic deformation of sandstone specimens after soaking in chemical solution was observed. Plastic deformation can be divided into distinct stages over time. Results showed that the prepeak incremental deformation after chemical corrosion was partially due to the increase in plastic deformation before reaching the peak and to the deformation caused by pore compression. Plastic deformation is an indirect indicator of the degree of chemical corrosion of sandstone specimens. After chemical corrosion, the porosity of sandstone specimens changed consistently with the velocity of longitudinal wave. Therefore, the calculation formula of the damage variable can be used to calculate the porosity of sandstone specimens at different time periods. The chemical damage of sandstone specimens was highly consistent with the peak strain. Therefore, the damage variable based on porosity can be used to quantitatively describe the damage caused by chemical corrosion.
    publisherAmerican Society of Civil Engineers
    titleQuantifying Microstructural Damage of Sandstone after Hydrochemical Corrosion
    typeJournal Paper
    journal volume18
    journal issue10
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001237
    page4018121
    treeInternational Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian