YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Explicit Discontinuous Deformation Analysis Method with Lumped Mass Matrix for Highly Discrete Block System

    Source: International Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 009
    Author:
    Yang Yongtao;Xu Dongdong;Zheng Hong
    DOI: 10.1061/(ASCE)GM.1943-5622.0001234
    Publisher: American Society of Civil Engineers
    Abstract: In the traditional discontinuous deformation analysis (DDA) method, the implicit time integration scheme is used to integrate equations of motion for modeling the mechanical behavior of a highly discrete rock block system. This requires that global equations be constantly solved. Hence, the computational efficiency of the traditional DDA method will decrease, especially when large-scale discontinuous problems are involved. Based on the explicit time integration scheme, an explicit version of the DDA (EDDA) method is proposed to improve computational efficiency of the traditional DDA method. Since a lumped mass matrix is used, there is no need to assemble global mass and stiffness matrices. More importantly, solving large-scale simultaneous algebraic equations can be avoided. The open–close iteration, which can assure the correct arrangement of constraints, is kept in the EDDA method. In addition, the simplex integration method, which is capable of conducting exact integration over an arbitrarily shaped block, is employed. Two numerical examples, including a sliding problem with an analytical solution and an underground cavern, are solved. The numerical results indicate the accuracy and robustness of the proposed EDDA method.
    • Download: (1.128Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Explicit Discontinuous Deformation Analysis Method with Lumped Mass Matrix for Highly Discrete Block System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248916
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYang Yongtao;Xu Dongdong;Zheng Hong
    date accessioned2019-02-26T07:43:13Z
    date available2019-02-26T07:43:13Z
    date issued2018
    identifier other%28ASCE%29GM.1943-5622.0001234.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248916
    description abstractIn the traditional discontinuous deformation analysis (DDA) method, the implicit time integration scheme is used to integrate equations of motion for modeling the mechanical behavior of a highly discrete rock block system. This requires that global equations be constantly solved. Hence, the computational efficiency of the traditional DDA method will decrease, especially when large-scale discontinuous problems are involved. Based on the explicit time integration scheme, an explicit version of the DDA (EDDA) method is proposed to improve computational efficiency of the traditional DDA method. Since a lumped mass matrix is used, there is no need to assemble global mass and stiffness matrices. More importantly, solving large-scale simultaneous algebraic equations can be avoided. The open–close iteration, which can assure the correct arrangement of constraints, is kept in the EDDA method. In addition, the simplex integration method, which is capable of conducting exact integration over an arbitrarily shaped block, is employed. Two numerical examples, including a sliding problem with an analytical solution and an underground cavern, are solved. The numerical results indicate the accuracy and robustness of the proposed EDDA method.
    publisherAmerican Society of Civil Engineers
    titleExplicit Discontinuous Deformation Analysis Method with Lumped Mass Matrix for Highly Discrete Block System
    typeJournal Paper
    journal volume18
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001234
    page4018098
    treeInternational Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian