YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Removal of Singularities in Hoek-Brown Criterion and Its Numerical Implementation and Applications

    Source: International Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 010
    Author:
    Dai Zi-Hang;You Tao;Xu Xiang;Zhu Qiao-Chuan
    DOI: 10.1061/(ASCE)GM.1943-5622.0001201
    Publisher: American Society of Civil Engineers
    Abstract: The representation of the Hoek-Brown criterion is an irregular curved hexagonal pyramid in the principal stress space, which leads to the occurrence of numerical singularities on the edges of the pyramid. With the aim of achieving a physical approximation to the pyramid, this study used both the C1 and C2 smoothing artifices on its sharp edges, and it was found that they were able to successfully eliminate the singularity and ensure the convexity of the yield surface. Meanwhile, to reflect the characteristic of the poor tensile strength of a rock mass, a tension cutoff surface was employed to form the whole modified combined yield surface. To facilitate comprehension and programming, the initial Hoek-Brown criterion and the smoothing and tension cutoff yield functions were all expressed in terms of stress invariants. The fully implicit backward Euler integral regression algorithm was employed to form the consistent stiffness matrix to ensure the high accuracy and fast convergence of numerical computations. In accordance with the failure zone in which a trial stress may fall, it may be pulled back to the initial Hoek–Brown yield surface, the transitional rounding yield surface, the tension cutoff yield surface, or the vertices that are the intersections of the former two with the latter. Furthermore, to facilitate the application of this modified Hoek-Brown criterion, a three-dimensional (3D) user-defined material behavior subroutine was developed in a finite-element program, and its reliability and applicability were verified through the numerical simulations of the triaxial compression and uniaxial tension tests of a rock and the excavation of a rock tunnel.
    • Download: (1.917Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Removal of Singularities in Hoek-Brown Criterion and Its Numerical Implementation and Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248885
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorDai Zi-Hang;You Tao;Xu Xiang;Zhu Qiao-Chuan
    date accessioned2019-02-26T07:42:55Z
    date available2019-02-26T07:42:55Z
    date issued2018
    identifier other%28ASCE%29GM.1943-5622.0001201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248885
    description abstractThe representation of the Hoek-Brown criterion is an irregular curved hexagonal pyramid in the principal stress space, which leads to the occurrence of numerical singularities on the edges of the pyramid. With the aim of achieving a physical approximation to the pyramid, this study used both the C1 and C2 smoothing artifices on its sharp edges, and it was found that they were able to successfully eliminate the singularity and ensure the convexity of the yield surface. Meanwhile, to reflect the characteristic of the poor tensile strength of a rock mass, a tension cutoff surface was employed to form the whole modified combined yield surface. To facilitate comprehension and programming, the initial Hoek-Brown criterion and the smoothing and tension cutoff yield functions were all expressed in terms of stress invariants. The fully implicit backward Euler integral regression algorithm was employed to form the consistent stiffness matrix to ensure the high accuracy and fast convergence of numerical computations. In accordance with the failure zone in which a trial stress may fall, it may be pulled back to the initial Hoek–Brown yield surface, the transitional rounding yield surface, the tension cutoff yield surface, or the vertices that are the intersections of the former two with the latter. Furthermore, to facilitate the application of this modified Hoek-Brown criterion, a three-dimensional (3D) user-defined material behavior subroutine was developed in a finite-element program, and its reliability and applicability were verified through the numerical simulations of the triaxial compression and uniaxial tension tests of a rock and the excavation of a rock tunnel.
    publisherAmerican Society of Civil Engineers
    titleRemoval of Singularities in Hoek-Brown Criterion and Its Numerical Implementation and Applications
    typeJournal Paper
    journal volume18
    journal issue10
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001201
    page4018127
    treeInternational Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian