YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on Mechanical Properties and Anchorage Performances of Rock Mass in the Fault Fracture Zone

    Source: International Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 007
    Author:
    Yin Qian;Jing Hongwen;Su Haijian;Zhao Honghui
    DOI: 10.1061/(ASCE)GM.1943-5622.0001187
    Publisher: American Society of Civil Engineers
    Abstract: The mechanical properties and anchorage performances of rock masses are important to the success of underground engineering in fault fracture zones, but the impact of the rock block size and cementing strength on these properties and performances is unclear. A set of laboratory methods was developed to simulate the development of rock masses in fault fracture zones. Next, model specimens were prepared from natural rock blocks of different sizes and cementing materials of various strengths, and an aluminum alloy bar was installed as a model bolt to fabricate anchored model specimens. Compared with natural rock samples, the fault fracture rock mass exhibited a clear degradation in its strength and deformation parameters, and the degradation coefficients ranged from 19.2 to 86.51%. Under an applied axial load, as the rock block size or cementing strength increased, the mechanical parameters, including peak strength and elastic modulus, for both anchored and nonanchored model specimens increased from 16.9 to 69.5%. Because of the anchorage performance of the bolt, the anchored model specimens presented larger mechanical parameters than those of the nonanchored models. The effective anchorage strength of the bolt was found to be generally stable as the rock block size increased, but it decreased with the cementing strength. The ultimate failure modes of the anchored models with smaller aggregate sizes or lower cementing strengths were found to be characterized by cracks propagating along the cementing surface. For models with a larger rock block size or higher cementing strength, crack development throughout the intact rock blocks was also observed.
    • Download: (3.849Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on Mechanical Properties and Anchorage Performances of Rock Mass in the Fault Fracture Zone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248872
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYin Qian;Jing Hongwen;Su Haijian;Zhao Honghui
    date accessioned2019-02-26T07:42:45Z
    date available2019-02-26T07:42:45Z
    date issued2018
    identifier other%28ASCE%29GM.1943-5622.0001187.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248872
    description abstractThe mechanical properties and anchorage performances of rock masses are important to the success of underground engineering in fault fracture zones, but the impact of the rock block size and cementing strength on these properties and performances is unclear. A set of laboratory methods was developed to simulate the development of rock masses in fault fracture zones. Next, model specimens were prepared from natural rock blocks of different sizes and cementing materials of various strengths, and an aluminum alloy bar was installed as a model bolt to fabricate anchored model specimens. Compared with natural rock samples, the fault fracture rock mass exhibited a clear degradation in its strength and deformation parameters, and the degradation coefficients ranged from 19.2 to 86.51%. Under an applied axial load, as the rock block size or cementing strength increased, the mechanical parameters, including peak strength and elastic modulus, for both anchored and nonanchored model specimens increased from 16.9 to 69.5%. Because of the anchorage performance of the bolt, the anchored model specimens presented larger mechanical parameters than those of the nonanchored models. The effective anchorage strength of the bolt was found to be generally stable as the rock block size increased, but it decreased with the cementing strength. The ultimate failure modes of the anchored models with smaller aggregate sizes or lower cementing strengths were found to be characterized by cracks propagating along the cementing surface. For models with a larger rock block size or higher cementing strength, crack development throughout the intact rock blocks was also observed.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study on Mechanical Properties and Anchorage Performances of Rock Mass in the Fault Fracture Zone
    typeJournal Paper
    journal volume18
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001187
    page4018067
    treeInternational Journal of Geomechanics:;2018:;Volume ( 018 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian