YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Superhealing and Contribution to the Design of a New Strengthening Theory

    Source: Journal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 007
    Author:
    Oucif Chahmi;Voyiadjis George Z.;Kattan Peter I.;Rabczuk Timon
    DOI: 10.1061/(ASCE)EM.1943-7889.0001484
    Publisher: American Society of Civil Engineers
    Abstract: Self-healing materials have recently become more popular due to their capability of self-repairing cracks and rehabilitation of structures. Recent research has revealed that self-healing presents a crucial solution for the strengthening of the materials. This new concept has been termed superhealing. Once the stiffness of the material is recovered, further healing can result in a strengthening of the material. This work presents a refined theory of the superhealing model within the framework of continuum damage mechanics. The proposed refined theory is extended in this paper from linear to nonlinear superhealing theory. The general framework of continuum damage-healing mechanics is first reviewed. Following that, the concepts of healing and superhealing of materials are introduced along with both their isotropic and anisotropic presentation. The proposed linear refined theory of superhealing materials and its anisotropic definition are presented using sound mathematical and mechanical principles. Afterwards, the nonlinear formulation of the refined superhealing theory and its anisotropic presentation are introduced. In addition, the link of the proposed theory with the theory of undamageable materials is outlined. Examples for the case of plane stress and one-dimensional element are demonstrated in which the refined theory of superhealing is applied. The aim of the present work is to present the proposed refined theory and provide guidance regarding the concept of the new theory that can be applied in manufacturing technology in the future. It is hoped that the new theory will open an area of new research in materials science and pave the way for new technologies that can be exploited for rehabilitation of structures.
    • Download: (1.453Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Superhealing and Contribution to the Design of a New Strengthening Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248780
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorOucif Chahmi;Voyiadjis George Z.;Kattan Peter I.;Rabczuk Timon
    date accessioned2019-02-26T07:41:49Z
    date available2019-02-26T07:41:49Z
    date issued2018
    identifier other%28ASCE%29EM.1943-7889.0001484.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248780
    description abstractSelf-healing materials have recently become more popular due to their capability of self-repairing cracks and rehabilitation of structures. Recent research has revealed that self-healing presents a crucial solution for the strengthening of the materials. This new concept has been termed superhealing. Once the stiffness of the material is recovered, further healing can result in a strengthening of the material. This work presents a refined theory of the superhealing model within the framework of continuum damage mechanics. The proposed refined theory is extended in this paper from linear to nonlinear superhealing theory. The general framework of continuum damage-healing mechanics is first reviewed. Following that, the concepts of healing and superhealing of materials are introduced along with both their isotropic and anisotropic presentation. The proposed linear refined theory of superhealing materials and its anisotropic definition are presented using sound mathematical and mechanical principles. Afterwards, the nonlinear formulation of the refined superhealing theory and its anisotropic presentation are introduced. In addition, the link of the proposed theory with the theory of undamageable materials is outlined. Examples for the case of plane stress and one-dimensional element are demonstrated in which the refined theory of superhealing is applied. The aim of the present work is to present the proposed refined theory and provide guidance regarding the concept of the new theory that can be applied in manufacturing technology in the future. It is hoped that the new theory will open an area of new research in materials science and pave the way for new technologies that can be exploited for rehabilitation of structures.
    publisherAmerican Society of Civil Engineers
    titleNonlinear Superhealing and Contribution to the Design of a New Strengthening Theory
    typeJournal Paper
    journal volume144
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001484
    page4018055
    treeJournal of Engineering Mechanics:;2018:;Volume ( 144 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian