YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Back-Analysis Method for Stope Displacements Using Gradient-Boosted Regression Tree and Firefly Algorithm

    Source: Journal of Computing in Civil Engineering:;2018:;Volume ( 032 ):;issue: 005
    Author:
    Qi Chongchong;Fourie Andy;Zhao Xu
    DOI: 10.1061/(ASCE)CP.1943-5487.0000779
    Publisher: American Society of Civil Engineers
    Abstract: It is essential to determine the properties of the rock mass surrounding underground excavations to facilitate stability analysis and engineering design. In this paper, a novel displacement back-analysis method was proposed based on gradient-boosted regression tree (GBRT) and firefly algorithm (FA). The proposed method, the GBRT-FA, utilized GBRT as an instance-based learning approach to substitute numerical modeling. Furthermore, FA was used for the hyperparameters tuning and the rock mass properties searching. The input variables in the numerical modeling were chosen to be deformation modulus, Poisson’s ratio, cohesion, and internal friction angle, which were back-analysed using the GBRT-FA. A total of 13,31 numerical models were conducted to provide the dataset for the training and testing of GBRT models. A parametric study of back-analysis performance was also conducted. The results show that FA was efficient in the hyperparameters tuning of GBRT with stabilized results being obtained within six iterations. The average median absolute percentage error (APE) between displacement values from numerical modeling and the optimum GBRT model was 5.4%, denoting that numerical modeling could be well substituted by the optimum GBRT model. The overall performance of the GBRT-FA was reasonably good, with the average APE value for all input variables being 6.3%. The substitution performance of GBRT models, the dataset size, and the number of displacement measurements were found to have a significant influence on the performance of the displacement back-analysis method. Suggestions for the engineering applications of back-analysis methods were made based on the results, which have a guiding significance for underground mines.
    • Download: (1.472Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Back-Analysis Method for Stope Displacements Using Gradient-Boosted Regression Tree and Firefly Algorithm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248640
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorQi Chongchong;Fourie Andy;Zhao Xu
    date accessioned2019-02-26T07:40:28Z
    date available2019-02-26T07:40:28Z
    date issued2018
    identifier other%28ASCE%29CP.1943-5487.0000779.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248640
    description abstractIt is essential to determine the properties of the rock mass surrounding underground excavations to facilitate stability analysis and engineering design. In this paper, a novel displacement back-analysis method was proposed based on gradient-boosted regression tree (GBRT) and firefly algorithm (FA). The proposed method, the GBRT-FA, utilized GBRT as an instance-based learning approach to substitute numerical modeling. Furthermore, FA was used for the hyperparameters tuning and the rock mass properties searching. The input variables in the numerical modeling were chosen to be deformation modulus, Poisson’s ratio, cohesion, and internal friction angle, which were back-analysed using the GBRT-FA. A total of 13,31 numerical models were conducted to provide the dataset for the training and testing of GBRT models. A parametric study of back-analysis performance was also conducted. The results show that FA was efficient in the hyperparameters tuning of GBRT with stabilized results being obtained within six iterations. The average median absolute percentage error (APE) between displacement values from numerical modeling and the optimum GBRT model was 5.4%, denoting that numerical modeling could be well substituted by the optimum GBRT model. The overall performance of the GBRT-FA was reasonably good, with the average APE value for all input variables being 6.3%. The substitution performance of GBRT models, the dataset size, and the number of displacement measurements were found to have a significant influence on the performance of the displacement back-analysis method. Suggestions for the engineering applications of back-analysis methods were made based on the results, which have a guiding significance for underground mines.
    publisherAmerican Society of Civil Engineers
    titleBack-Analysis Method for Stope Displacements Using Gradient-Boosted Regression Tree and Firefly Algorithm
    typeJournal Paper
    journal volume32
    journal issue5
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000779
    page4018031
    treeJournal of Computing in Civil Engineering:;2018:;Volume ( 032 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian